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Abstract

The fast improvement of laser scanning technology has pushed terrestrial laser scanning (TLS) to the forefront
of geodetic deformation analysis. As TLS becomes more integrated into this field, it is critical to construct
a stochastic model that appropriately describes the uncertainty in TLS measurements. This includes creating
a valid and fully populated variance-covariance matrix (VCM) for TLS polar observations. This approach
requires estimating variances for range, vertical, and horizontal angles, as well as determining the correlations
between these observations. In this contribution, we present an efficient strategy to determine the range vari-
ances in TLS based on raw intensities. A two-dimensional measuring approach is used on various specimens
with TLS devices that offer raw intensity measurements, such as the Z+F Imager 5016A series. Verification is
carried out using the observations from real-world scenarios (Brucher Water Dam and Bonn reference wall).
Overall, this work proposes a methodology for evaluating the range variations of the specified TLS device.
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1 Introduction

Terrestrial Laser Scanners (TLS) represent an
important technological advancement in present
geodetic research and applications, facilitating the
acquisition of 3D point clouds with high precision
and spatial resolution. Recent developments in laser
technology and data processing algorithms have up-
graded their capabilities, allowing for the generation
of dense point clouds on complex surfaces (Li et al.,
2021) and built structures (Zhou et al., 2024).

These advancements have reinforced using TLS in
geodetic engineering, particularly for applications
that require millimeter-level of accuracy (Holst and
Kuhlmann, 2016): e.g., deformation monitoring and
structural analysis of critical infrastructure such as
water dams (Kerekes and Schwieger, 2021), ra-
dio telescopes (Holst et al., 2017), and bridges
(Zhou et al., 2024). Distinguishing between ac-
tual deformation and measurement uncertainty is of
paramount importance for all these applications.

The TLS output is represented as a discrete point
cloud defined by local Cartesian coordinates and

backscattered intensity. However, the raw measure-
ments of the TLS are originally polar, consisting of
ranges from the scanner to the scanning target, verti-
cal angles, and horizontal angles. The uncertainty of
these measurements arises from four primary error
sources: scanner imperfections, atmospheric condi-
tions, scanning geometry, and the physical proper-
ties of the scanned surface (Soudarissanane et al.,
2011). Thus, a comprehensive understanding of
TLS stochastic behavior necessitates the develop-
ment of a fully populated variance-covariance ma-
trix (VCM) for the raw measurements.

The construction of the VCM requires a representa-
tion of variances and the covariances of these polar
measurements. Most studies focus only on the esti-
mation of the range variances. For example, the first
physical relation between the rage standard devia-
tion and the backscattered intensity was introduced
by Wujanz et al. (2017), which led to an intensity-
based variance model for TLS range measurements
applying 1D measuring mode. Afterward, Wujanz
et al. (2018) employed 3D scanning mode, estimat-
ing range noise from best-fitting planes. Besides,
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Heinz et al. (2018) estimated intensity-based vari-
ance model for 2D laser scanners, using repetitive
profile scanning.

Reviewing these studies reveals that range variance
estimation has been conducted in controlled labo-
ratory environments with specialized specimens, as
well as experimental configurations like rail-bound
comparator tracks, which inherently limit the appli-
cability of these methods. To address these limi-
tations, this study aims to make the following two
main contributions:

• We introduce a workflow that enables high-end
3D laser scanner users to estimate range vari-
ances for the scanned objects based on a 2D
scanning mode.

• We evaluate this workflow’s effectiveness
when applied to high-end laser scanners using
raw intensity data.

This workflow consists of a measurement concept
and data processing strategy. We will introduce it in
Section 3 and 4 and validate it in Section 5

2 State of the art

As with any geodetic instrument, TLS measure-
ments are affected by both systematic and random
errors due to different error sources (Soudarissanane
et al., 2011). The scanner imperfections, such as
misalignments or eccentricities, mostly lead to sys-
tematic errors. Although calibration procedures
deal with most of these errors, the remaining errors
that are considered random are due to variability in
calibration parameters and their sensitivity to tem-
poral and environmental conditions (Medic et al.,
2020).

Additionally, atmospheric effects due to variations
in temperature, air pressure, and humidity influence
the propagation characteristics of the laser beam.
These refraction-induced systematic errors can be
reduced by developing correction models based on
additional meteorological data (Friedli et al., 2019).
However, the randomized residuals that exacerbate
with increasing measurement range vary slowly in
both time and space in stable atmospheric condi-
tions. Also, random errors can occur due to high
atmospheric fluctuations (Kerekes and Schwieger,
2021).

Furthermore, both scanning geometry and surface
properties affect the measurement accuracy ran-
domly and systematically, depending on factors
such as reflectivity, surface interaction, and scan-
ning angles. Among these, systematic errors often
dominate and arise from the interaction between the
laser beam and the scanned surface (Soudarissanane
et al., 2011; Zámečnı́ková et al., 2014).

All of these error sources affect the range and angu-
lar measurements of the TLS while also introducing
correlations between observations. Consequently,
a comprehensive understanding of TLS stochastic
behavior requires the development of a fully popu-
lated VCM, as the major component of uncertainty
is random. Anyhow, as stated in the introduction,
this study focuses only on the range variances as an
initial entry for the VCM.

Wujanz et al. (2017) proposed a strategy for empir-
ically estimating range variances σ2

r of laser scan-
ner measurements, which characterizes the relation-
ship between range noise and backscattered inten-
sity through an exponential function:

σr = aIb + c. (1)

where σr represents the range standard deviation, I
is the backscattered intensity, and a, b, and c are the
intensity-based range variance parameters.

Equation 1 takes into account variations of intensity
as well as range variance due to the object distances,
the variations in incidence angles, and the radiomet-
ric properties of the scanned surface. However, the
methodology for estimating the parameters a,b,c
introduced by Wujanz et al. (2017) relied on the
1D scanning mode, which involves repeated single-
point measurements at varying distances. This ap-
proach is not freely usable due to safety concerns
associated with the concentrated energy of the laser.

To address the limitations of the 1D mode, Ho-
biger et al. (2018); Wujanz et al. (2018); Schmitz
et al. (2019) employed the standard 3D scanning
mode to investigate range noise empirically. Their
methodology estimated residuals from best-fitting
planes that derived from the point cloud of planar
targets, which were oriented to achieve zero inci-
dence angles and minimize angular encoder devi-
ations. However, it relied on specific model as-
sumptions that do not fit targets with non-uniform
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backscattering. Thus, those methods are only appli-
cable for special setups.

Based on the mentioned methodologies, Heinz et al.
(2018) introduced a strategy for deriving intensity-
based range variances suitable for 2D laser scan-
ners, i.e. profile laser scanners, specifically the
Z+F Profiler 9012A. Following this method, Schill
et al. (2024) introduced applying this method us-
ing 3D high-end laser scanners. This method relies
on repetitive profile scanning in order to estimate
range uncertainties without the need for any geo-
metric primitive assumptions.

This summary shows that strategies for determining
intensity-based range variances for TLS are mani-
fold. Anyhow, they still suffer from the complex-
ity of the measurement setup and the necessity of
special specimens, as previous strategies were per-
formed in controlled environments. In contrast, the
introduced workflow enables scanner users to esti-
mate range uncertainties under normal conditions
using the scanning target itself to build the intensity-
based range variance model. This is why we imple-
mented a new workflow, as presented in this study.

3 Measurement concept

Laser scanner manufacturers either offer to directly
export the raw intensity values or scale them before
the user is offered to export them. Sometimes, both
options exist. This paper focuses on scanners that
provide raw intensity values, specifically the Z+F
Imager 5016A (Zoller + Fröhlich GmbH, 2025a).
This scanner is also capable of operating in both
panoramic (3D) and profile (2D) modes, support-
ing various scanning rates across both dimensions.
Considering the measurement efficiency, we adopt
the 2D method to derive an intensity-based range
variance model herein.

As estimating range standard deviations for fitting
Equation 1 requires data redundancy, the measure-
ment concept employed involved profile scanning of
the target at close, medium, and long ranges using a
scanning rate of 1.09 MHz. Consequently, we can
cover all range variations as well as the targeted in-
tensity spectrum.

Based on that, in this section, we introduce a mea-
surement concept to construct the model. The ex-
periment was divided into two phases. The first

phase aimed to construct the intensity-based range
variance model in a controlled laboratory environ-
ment using a spectralon board (Figure 1). The sec-
ond phase sought to estimate the same model un-
der real-world conditions, observing natural objects
such as the Brucher water dam in Bonn (Figure 2)
and the Bonn reference wall (Figure 3).

Figure 1. Measurement configuration using Spec-
tralon Board with four colors (dark gray, white,
black, light gray) observed by the TLS in profile
mode at 10m, 25m, and 50m distance

In the first phase, the scanner remained stationary
while the spectralon board with four colors that
varied from the white color representing a high-
intensity reflectivity to the black one with a very
low reflectivity was positioned at three distances:
10m, 25m, and 50m (Figure 1). For each color of
the board, at least 3,000 profile lines were recorded
to have a sufficient number of points for each target.
Hence, we can cover the full intensity spectrum for
all the ranges.

Conversely, in the second phase, we aimed to evalu-
ate our workflow; therefore, profile scanning of two
lines on each side of the Brucher water dam (Fig-
ure 2) and the Bonn reference wall (Figure 3) was
conducted at distances of 10m, 20m, and 30m.

4 Data Processing

This chapter provides an overview of the data pro-
cessing to build the intensity-based range variance
model. To achieve our goal, as shown in Fig-
ure 4, the data processing step is structured into two
stages: Preprocessing and model fitting.

4.1 Data Preprocessing

In this step, we aim to prepare the data for the subse-
quent model fitting procedure. This starts by export-
ing the raw data from the scanner using the manu-
facturer software Laser Control (Zoller + Fröhlich
GmbH, 2025b), which allows us to export the polar
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Figure 2. Measurement setup at the Brucher water
dam, where two scanning lines were placed on
each side at distances of 10 m, 20 m, and 30 m,
represented by white points.

Figure 3. Measurement configuration at the Bonn
reference wall, illustrating two scanning lines on
each side positioned at 10 m, 20 m, and 30 m,
marked by blue points.

measurements of profile scanning.

After exporting the data, outliers in the range and
intensity values are identified and removed. To
achieve this, the range and intensity values are first
grouped according to vertical ticks across all pro-
files of the target. In turn, for each vertical tick, a
series of range values and their corresponding in-
tensity values are obtained.

To assess variability within each vertical tick, the
standard deviation is estimated relative to both the
mean and the median for both the range r and inten-
sity values I (marked as x in the subsequent equa-
tions). The standard deviation concerning the mean

Figure 4. Schematic representation of the data pro-
cessing workflow.

is defined as

σmean =

√
1

n−1

n

∑
i=1

(xi − x̄)2, (2)

where x̄ is the arithmetic mean:

x̄ =
1
n

n

∑
i=1

xi (3)

Similarly, the standard deviation for the median is
given by

σmedian =

√
1

n−1

n

∑
i=1

(xi −median(x))2, (4)

where median(x) denotes the median of the data set.

Outlier removal is performed by applying a thresh-
old based on three times the standard deviation rel-
ative to the mean or the median. The measurement
xi is considered an outlier if either of the following
conditions is met:

|xi − x̄|> 3σmean, (5)

|xi −median(x)|> 3σmedian. (6)

All observations satisfying this condition are re-
moved from the vertical tick group, ensuring that
only values within an acceptable range are retained.

4.2 Model fitting

Once the outliers are removed, we can estimate the
mean intensity using Equation 3 and the standard
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Figure 5. Mean intensity and range standard deviation (STD) for each vertical tick on the Spectralon board
(dark gray, white, black, and light gray) at 10 m, 25 m, and 50 m following data preprocessing, along with
the intensity-based range variance model of the Z+F Imager 5016A at a 1.09 MHz scanning rate after param-
eter estimation.

deviation of the range per tick using Equation 2. Ap-
plying these computations to each scanning data set
for each color of the spectralon board, we obtain fil-
tered points that have a mean intensity and a range
standard deviation (Figure 5).

As Figure 5 illustrates, the data exhibits the charac-
teristics of the intensity-based range variance model
(Equation 1). Consequently, this dataset is utilized
to estimate the model parameters a,b,c (Table 1) for
the 1.09 MHz scanning rate using parametric least
squares.

The relationship between mean intensity values and
range uncertainties, constructed after data process-
ing, shows that targets with low intensities observed
from long ranges have high range uncertainties,
while targets with high intensities and short ranges
have lower uncertainties. Additionally, a single
model represents the intensity-based range variance
across close, medium, and long ranges.

Table 1. Intensity-based range variance model pa-
rameters of the Z+F Imager 5016A at a 1.09 MHz
scanning rate.

Scanning Rate â
[mm

Inc
]

b̂ [−] ĉ [mm]

1.09 MHz 100195 -1.031 0.21

5 Model Validation

We validate the results using two approaches.
The first approach involves cross-validation with
the Brucher water dam and Bonn reference wall
datasets. The second approach examines whether
the model could be independently derived from each
of those datasets. If feasible, the model obtained
from laboratory observations could then be com-
pared with those estimated from the water dam and
reference wall datasets.

5.1 Cross-Validation

To evaluate the model’s accuracy, cross-validation
is performed using the Brucher water dam and
Bonn reference wall datasets. After exporting each
dataset, outlier removal is applied as in Section 4.1.
Consequently, we estimate both the mean intensity,
ĪEnv, and the standard deviation, σ̂r,Env, for each ver-
tical tick. For the same mean intensity values, we
generate the corresponding range standard devia-
tions, σr,Lab, but this time from the intensity-based
range variance model generated in the laboratory.
The residuals, εi, are then computed as the differ-
ence between the model-predicted range standard
deviation, σr,Lab, and the estimated standard devi-
ation, σ̂r,Env.

To estimate the accuracy of the model, we cal-
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culate the root mean square error (RMSE) as the
arithmetic mean of the squared residual εi for both
datasets, which are presented in Table 2. From
this table, the RMSE values between the model es-
timated from the Bonn reference wall dataset and
the Spectralon board are lower than those between
the Brucher water dam dataset and the Spectralon
board. This is due to the higher uncertainty of the
water dam dataset, influenced by its geometry and
surface properties.

Table 2. RMSE of the intensity-based range vari-
ance model fitting at 1.09 MHz, evaluated on
the Brucher water dam and Bonn reference wall
datasets.

Target RMSE [mm]

Bonn reference wall 0.03
Brucher water dam 0.07

5.2 Model Comparison

In the preceding section, range standard deviations
and mean intensities for the Brucher water dam and
Bonn reference wall datasets were estimated. Plot-
ting these values against the intensity-based range
variance model in Figure 6 shows that the data dis-
tribution follows a similar trend to the estimated
model. This observation motivated the assessment
of whether individually fitted models could be de-
rived for each dataset separately.

Figure 6. The Brucher water dam and Bonn ref-
erence wall datasets behavior comparing with the
intensity-based range variance model of the same
scanning rate (1.09MHz).

By applying the parametric least squares adjust-

Table 3. Estimated parameters for the intensity-
based range variance model using the Bonn Refer-
ence Wall and Brucher Water Dam datasets.

Dataset â
[mm

Inc
]

b̂ [−] ĉ [mm]

Bonn Reference Wall 4386 -0.775 0.19
Brucher Water Dam 18516 -0.872 0.18

Figure 7. Comparison of intensity-based range
variance models derived from the Spectralon
board, Bonn reference wall, and Brucher water
dam datasets.

Figure 8. Intensity-based range variance models
from the Spectralon board, Bonn reference wall,
and Brucher water dam datasets, focusing on the
intensity spectrum covered by the Brucher water
dam and Bonn reference wall datasets.

ment, as described in Section 4.2, the parameters for
each function are estimated (Table 3). Comparing
the two sets of model parameters, the Brucher wa-
ter dam dataset has higher overall uncertainty than
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the Bonn reference wall dataset, explaining the dif-
ference in their a parameters. Parameters a and b
generally show large differences compared with Ta-
ble 1, while parameter c is very close in magnitude.
The differences between these parameters will be
explained based on the corresponding graphs.

Figure 7 displays the function graphs based upon
the lab estimation (Table 1), water dam and refer-
ence wall estimation (both in Table 3) over the full
range of intensity values, while Figure 8 focuses the
same graphs on the limited intensity spectrum that
is covered by water dam and reference wall (also
highlighted by orange vertical lines in Figure 7). On
the one hand, we observe in Figure 8 that the dif-
ferences between the models are less than 0.2 mm,
where the maximal difference is gained for low in-
tensities. On the other hand, Figure 7 implies that
the differences can reach up to about 3 mm for low
intensities if we consider the full range of possible
intensity values. This is clearly an extrapolation ef-
fect due to the lack of low-intensity observations.

Once the two models are derived, their validity can
be assessed by comparing them against the existing
model. This validation is performed by estimating
the residuals between the range standard deviation
obtained from the model of either the Brucher wa-
ter dam or the Bonn reference wall and those de-
rived from the model generated using the Spectralon
board. Subsequently, the RMSE values were esti-
mated to quantify the deviations, as presented in Ta-
ble 4.

Table 4. The RMSE values are estimated by com-
puting the residuals between the model estimated
from the Spectralon board and the model from
the Brucher water dam and Bonn reference wall
datasets.

Target RMSE [mm]

Bonn reference wall 0.02
Brucher water dam 0.07

As illustrated in Figure 8, the models derived from
the two datasets do not have the same behavior com-
pared to the model estimated from the Spectralon
board. This variation is due to each target’s sur-
face properties. The reference wall has a smooth
and uniform surface, while the Brucher water dam
exhibits a more complex structure with a concave
shape, therefore increasing range measurement un-

certainties. This also explains the RMSE values pre-
sented in Table 2 and Table 4, where the RMSE es-
timated using the water dam dataset is higher than
that of the reference wall.

6 Conclusion

This article introduces a workflow for calculating
intensity-based range variances of TLS using the
Z+F Imager 5016A laser scanner. The method was
originally tested in a controlled laboratory setting,
using a Spectralon board with four distinct inten-
sity levels to calculate range standard deviations and
mean intensities at varied distances.

The estimated model has been verified using cross-
validation, which compared the estimated range
standard deviations from the Brucher water dam and
Bonn reference wall datasets to those obtained from
the Spectralon-based model. The Bonn reference
wall dataset shows fewer deviations because of its
smooth and uniform surface, while the Brucher wa-
ter dam dataset shows higher uncertainties consid-
ering its concave geometry and high surface rough-
ness.

The estimated parameters of the intensity-based
model reflect variations with distinct a, b, and c val-
ues for each dataset, confirming the feasibility of de-
riving stochastic models without a controlled labo-
ratory setup. However, extending the water dam and
reference wall models beyond the intensity cover-
age range leads to extrapolation, with differences of
around 1 mm and 3 mm compared to the Spectralon
model. As shown in Figure 7 and Figure 8, these
differences are negligible within the covered inten-
sity spectrum, indicating that each model is only
valid for its respective surface properties and can-
not be generalized for a full intensity range.

Future work will focus on extending this work-
flow to all available scanning rates of the Z+F Im-
ager 5016A to assess the consistency of the derived
stochastic models across different acquisition set-
tings. Additionally, this methodology will be ap-
plied to include laser scanners that provide scaled
intensity values.
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