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Abstract 

Attaining accurate displacement and attitude information is essential for structural health monitoring 
of large-span bridges, as they provide critical information regarding the condition and stability of 
structures. Integrated determination of bridges displacement and attitude with Global Navigation 
Satellite System (GNSS) enables early detection of potential structural issues and produce a more 
effective maintenance plan for informed decision-making. The traditional method of GNSS-based 
attitude determination could be split into two steps: calculating the baseline first, and then deriving 
the attitude information from the baseline solution. This paper integrates GNSS positioning and 
attitude determination within one step. Firstly, this method combines the GNSS observations from 
multiple antennas located on the bridge, utilizes a unit quaternion to express the attitude, and 
parameterizes the displacement, attitude and carrier-phase ambiguities in one observation equation. 
Then, the Unscented Kalman Filter (UKF) is adapted to achieve the optimal estimation of the 
quaternion-based nonlinear systems. Finally, the double-differenced ambiguities between the 
stations are resolved to integers to improve the accuracy of positioning and attitude determination. 
As an example, this method is used to process the data gathered with the GeoSHM system on the 
Forth Road Bridge in the UK and the accuracy of the developed GNSS positioning and attitude 
determination method is evaluated and analyzed. 

Keywords: GNSS integrated positioning and attitude determination, structural health Monitoring, unscented 
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1 Introduction  

Displacement and attitude are key indicators of 

bridge health conditions, essential for structural 

health monitoring (SHM). Monitoring these 

parameters helps assess operational states, detect 

anomalies, and ensure structural safety and 

durability. Global Navigation Satellite System 

(GNSS) enables real-time tracking of bridge 

displacement and attitude, allowing for continuous 

monitoring, prompt detection of risks, and timely 

interventions through a dedicated SHM network. 

The primary GNSS-based method for bridge SHM 

is real-time kinematic (RTK), which leverages 

broadcast ephemeris and short-baseline (<3 km) 

double-difference observations to significantly 

mitigate errors such as orbital, clock, and 

atmospheric delays, enabling real-time, high-

accuracy displacement monitoring of bridges 

(Meng et al., 2002; Brownjohn et al., 2004; Yu et 

al., 2014). However, the RTK positioning mode is 

currently limited to displacement monitoring and 

cannot effectively monitor real-time attitude 

changes in bridges. 
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GNSS attitude determination methods can be 

classified into two main categories: two-step 

methods and one-step methods. In the two-step 

method, dynamic baselines between receivers are 

first computed from raw observations, followed by 

the derivation of attitude information from these 

baselines (Tian et al., 2017; Liu et al., 2022). These 

methods require complex computations, such as 

matrix inversion, which pose singularity risks. 

Additionally, by separating positioning from 

attitude determination, they fail to capture the full 

cross-correlation between position and attitude 

parameters.  

The one-step method leverages multiple GNSS 

receivers with a known geometric distribution on 

the structure, directly determining the three-

dimentional (3D) position and attitude of the 

monitoring stations on the bridge. An approach to 

improve GNSS attitude determination lies in 

effectively utilizing baseline constraints (e.g., fixed 

distances between monitoring stations) to enhance 

ambiguity resolution success rates. Teunissen 

(2006) extended the classical Least Squares 

Ambiguity Decorrelation Adjustment (LAMBDA) 

method by introducing the Constrained LAMBDA 

(C-LAMBDA) method, incorporating baseline 

length constraints into the objective function to 

accelerate convergence and improve reliability. The 

Multivariate Constrained LAMBDA (MC-

LAMBDA) method further adds “length + angle” 

constraints, significantly enhancing the model 

strength (Giorgi and Teunissen 2010). However, these 

methods primarily express attitude parameters as 

rotation matrices, imposing orthogonality 

constraints to ensure they belong to the SO(3) 

group, leading to computational complexity. 

Compared to rotation matrices, quaternions offer a 

minimal representation of attitude. Quaternion-

based attitude determination using the Extended 

Kalman Filter (EKF) has demonstrated its 

effectiveness, particularly for aircraft and vehicle 

applications (Medina et al., 2020; An et al., 2024). 

However, these methods have yet to be explored to 

the real-time monitoring of large spatial structures 

such as bridges. While quaternions provide a 

compact representation for solving complex 

nonlinear systems, the integration of multiple GNSS 

antennas and IMU based on EKF has been 

investigated for Unmanned Aerial Vehicles (UAV) 

and vehicular applications (Eling et al., 2013a, 

2013b). 

In this paper, we developed a quaternion-based 

positioning and attitude determination method using 

an Unscented Kalman Filter (UKF; Julier et al., 

2000; Wan and Van Der Merwe, 2000) for SHM 

applications, it is new to apply the GNSS integrated 

displacement and attitude determination method for 

bridge monitoring. The UKF offers specific 

advantages in this context due to its ability to handle 

nonlinearity more effectively. Unlike the EKF, 

which linearizes the system around a nominal state 

using first-order Taylor expansion, the UKF 

employs the unscented transform to approximate 

the state distribution. This approach allows it to 

capture higher-order moments better and provides 

increased robustness to nonlinearities. This research 

is designed to exploit the UKF’s advantages in 

handling nonlinearities, which are essential in 

integrated GNSS positioning and attitude 

determination for SHM. 

2 Mathematical models 

2.1 Notations 

The italic characters or symbols indicate scaler 

quantities or functions, e.g. 𝑐; boldface is used to 

denote a vector or matrix, e.g. b and 𝐇; The matrix 

or vector transpose is indicated with a superscript 

(∙)⊤ , e.g. 𝐛⊤  and 𝐇⊤ . In this work, the Earth-

Centered, Earth-Fixed (ECEF) of the global frame 

is abbreviated as 𝑒 -frame. The bridge coordinate 

system is defined with the origin of the base station 

𝑟0, and its three axes point to Longitudinal-Lateral-

Down of the bridge (Meng 2002). The local frame 

(𝑛-frame) is defined with the origin 𝑟1 , and with 

three axes pointing to local North-East-Down. The 

body frame (𝑏-frame) is defined with its origin at 𝑟1, 

the right axis aligned with 𝑟2 in the horizontal plane, 

the front axis perpendicular to the right axis within 

the horizontal plane, and the down axis pointing 

toward the local downward direction. The 

relationship between BCS, 𝑛-frame and 𝑏-frame are 

illustrated on Fig. 1. 

 
Figure 1 GNSS receivers’ setup for SHM and the 

relationship between 𝑛-frame and 𝑏-frame. 
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2.2 Measurement model 

Assuming we have one base station 𝑟0  and two 

monitoring stations 𝑟1 , 𝑟2  mounted on the middle 

span of the bridge, as marked in Fig. 1. The 

linearized double-differenced observation equations 

for baselines 𝑟0𝑟1 and 𝑟1𝑟2 between two satellites 𝑖, 
𝑗 on the 𝑙th frequency are given as 

{
 
 

 
 𝑃𝑟0𝑟1,𝑙

𝑖𝑗
= 𝜌𝑟0𝑟1

𝑖𝑗
+ 𝐠𝑟0

𝑖𝑗
𝐑𝑛
𝑒𝐛𝑟0𝑟1

𝑛 + 𝜀(𝑃𝑟0𝑟1,𝑙
𝑖𝑗

)

𝑃𝑟1𝑟2,𝑙
𝑖𝑗

= 𝜌𝑟1𝑟2
𝑖𝑗

+ 𝐠𝑟1
𝑖𝑗
𝐑𝑛
𝑒𝐛𝑟1𝑟2

𝑛 + 𝜀(𝑃𝑟1𝑟2,𝑙
𝑖𝑗

)

𝐿𝑟0𝑟1,𝑙
𝑖𝑗

= 𝜌𝑟0𝑟1
𝑖𝑗

+ 𝐠𝑟0
𝑖𝑗
𝐑𝑛
𝑒𝐛𝑟0𝑟1

𝑛 + 𝜆𝑙𝑁𝑟0𝑟1,𝑙
𝑖𝑗

+ 𝜀(𝐿𝑟0𝑟1,𝑙
𝑖𝑗

)

𝐿𝑟1𝑟2,𝑙
𝑖𝑗

= 𝜌𝑟1𝑟2
𝑖𝑗

+ 𝐠𝑟1
𝑖𝑗
𝐑𝑛
𝑒𝐛𝑟1𝑟2

𝑛 + 𝜆𝑙𝑁𝑟1𝑟2,𝑙
𝑖𝑗

+ 𝜀(𝐿𝑟1𝑟2,𝑙
𝑖𝑗

)

,(1) 

in which 𝑃 , 𝐿  denote the code and carrier-phase 

measurements in unit of meters; 𝜌  indicates the 

geometrical distance between the antenna phase 

centers of satellite and receiver, which is calculated 

based on the known satellite orbit and approximate 

position of receiver; 𝐠 is the unit directional vector 

from satellite to receiver antenna with a dimension 

of 1 × 3; 𝐑𝑛
𝑒  is the rotation matrix from 𝑛-frame to 

e-frame, which is constructed based on the 

approximate position of the receiver; 𝐛 is a 3 × 1 

column vector denoting the baseline vector 

expressed in 𝑛 -frame; 𝑁  means the double-

differenced ambiguity parameters; 𝜀  indicates the 

double differenced code and phase measurement 

noises. One may note the satellite and receiver 

hardware delays are mitigated in (1). 

2.3 Attitude representation 

Determining the attitude of the bridge is calculating 

the rotation of 𝑏-frame with respect to the 𝑛-frame. 

Assuming 𝛉 indicates the rotation vector from 𝑏-

frame to 𝑛-frame and is represented in equivalent 

angle-axis format as 𝛉 = 𝜃𝐮  with 𝜃 = ‖𝛉‖  and 

𝐮 = 𝛉 𝜃⁄ . Both direction cosine matrix and unit 

quaternions are commonly used in orientation 

representation in aerospace and robotics. Compared 

with the direction cosine matrix, the unit quaternion 

has the advantages of compact representation, 

smooth interpolation, avoidance of gimbal lock, and 

efficient rotation composition. There we are using 

quaternion to represent the orientation parameters, 

which is expressed as 

𝐪 = [
𝑞𝑤
𝐪𝑢
] = [

𝑐𝑜𝑠(𝜃 2⁄ )

𝐮 𝑠𝑖𝑛(𝜃 2⁄ )
].  (2) 

The relationship between the angle-axis rotation 

vector and the unit quaternion is briefly described as 

{
𝜃𝐮 ∈ ℝ𝟑

𝐸𝑥𝑝(∙)
→   𝐪 ∈ 𝑆𝑂(𝟑)

𝐪 ∈ 𝑆𝑂(3)
𝐿𝑜𝑔(∙)
→   𝜃𝐮 ∈ ℝ𝟑

  (3) 

in which 𝐸𝑥𝑝(∙): ℝ3 → 𝑆𝑂(3)  denotes an 

exponential map transforming the rotation vector to 

an equivalent unit quaternion; 𝐿𝑜𝑔(∙): 𝑆𝑂(3)  →
ℝ3  indicates the logarithmic map that project the 

unit quaternion to the equivalent rotation vector. 

To derive the bridge attitude information, the 

baseline in 𝑛-frame (𝐛𝑟1𝑟2
𝑛 ) could be expressed as a 

function of unit quaternion as 

𝐛𝑟1𝑟2
𝑛 = 𝐹(𝐪) = 𝐪 ∘ 𝐛𝑟1𝑟2

𝑏 ∘ 𝐪−1  (4) 

where ∘ is the operator of quaternion multiplication; 

𝐛𝑟1𝑟2
𝑏   represents the baseline vector of 𝑟1𝑟2  in 𝑏 -

frame, which is precisely measured in advance and 

known. Substitute (4) into (1), then we get 

{
 
 

 
 𝑃𝑟0𝑟1,𝑙

𝑖𝑗
= 𝜌𝑟0𝑟1

𝑖𝑗
+ 𝐠𝑟0

𝑖𝑗
𝐑𝑛
𝑒𝐛𝑟0𝑟1

𝑛 + 𝜀(𝑃𝑟0𝑟1,𝑙
𝑖𝑗

)

𝑃𝑟1𝑟2,𝑙
𝑖𝑗

= 𝜌𝑟1𝑟2
𝑖𝑗

+ 𝐠𝑟1
𝑖𝑗
𝐑𝑛
𝑒𝐹(𝒒) + 𝜀(𝑃𝑟1𝑟2,𝑙

𝑖𝑗
)

𝐿𝑟0𝑟1,𝑙
𝑖𝑗

= 𝜌𝑟0𝑟1
𝑖𝑗

+ 𝐠𝑟0
𝑖𝑗
𝐑𝑛
𝑒𝐛𝑟0𝑟1

𝑛 + 𝜆𝑙𝑁𝑟0𝑟1,𝑙
𝑖𝑗

+ 𝜀(𝐿𝑟0𝑟1,𝑙
𝑖𝑗

)

𝐿𝑟1𝑟2,𝑙
𝑖𝑗

= 𝜌𝑟1𝑟2
𝑖𝑗

+ 𝐠𝑟1
𝑖𝑗
𝐑𝑛
𝑒𝐹(𝐪) + 𝜆𝑙𝑁𝑟1𝑟2,𝑙

𝑖 + 𝜀(𝐿𝑟1𝑟2,𝑙
𝑖𝑗

)

(5) 

Equation (5) is the measurement model for 

integrated positioning and attitude determination. 

Note that the measurement model is nonlinear 

because of the existence of nonlinear function 𝐹(𝐪) 
in (5). In the next section, we will introduce how to 

solve the equations based on UKF. 

2.4 Integrated Positioning and Attitude 

Estimation 

2.4.1 State representation 

From (5), we can derive the nominal state vector as 

𝐗 = [
 𝐛𝑟0𝑟1⏟  
𝐛𝑟0𝑟1∈ℝ

3

 𝐪 ⏟
𝐪∈𝑆𝑂(3)

 𝐍 ⏟
𝐍∈ℤ]

⊤

,  (6) 

and its error state is formulated as 

𝜹𝐗 = [
 𝛿𝐛𝑟0𝑟1  ⏟  
𝛿𝐛𝑟0𝑟1∈ℝ

𝟑

 𝛿𝛉 ⏟
𝜹𝛉∈ℝ𝟑

 𝛿𝐍 ⏟
𝛿𝐍∈ℝ]

⊤

.  (7) 

The estimated state 𝐗 is a point on the composite 

manifold 𝒳 ≜ ℝ3 × ℝ𝑛2 × 𝑆𝑂(3) × ℤ . The error 

state 𝛿𝐗 is defined on the tangent space of 𝒳 at 𝐗, 

which can be parameterized with the vector space of 

float values. 

Based on the state representation, the measurement 

model of (5) is further simplified in matrix format 

as 

𝐘 = 𝐇1𝛿𝐛𝑟0𝑟1 +𝐇2𝐹(𝐪) + 𝐇3𝛿𝐍 + 𝛆, (8) 

where the Observed-Minus-Computed (OMC) 

vector 𝐘 , design matrices 𝐇1 , 𝐇2 , and 𝐇3  are 

constructed based on equation (5). 
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2.4.2 Propagation Step 

The propagation step transforms the state and its 

variance-covariance through the kinematic model. 

The propagated state and covariance matrix from 

epoch 𝑘 − 1 to 𝑘 is written as 

{
𝐗𝑘|𝑘−1 = 𝐅𝑘𝐗𝑘−1 + 𝜔𝑘−1

𝓟𝑘|𝑘−1 = 𝐅𝑘𝓟𝑘−1𝐅𝑘
𝑇 +𝐐𝑘−1

,         (9) 

where 𝓟  is the covariance matrix of the state 

vector; 𝜔𝑘−1 ∼ 𝒩(0,𝐐𝑘−1)  is the process noise 

which follows a Gaussian normal distribution with 

a mean of 0 and a variance of 𝐐𝑘−1   𝐅  is the 

transition matrix, which could be a constant velocity 

model or IMU mechanization model with 

measurements of acceleration and angular rate  This 

work focusses on GNSS-only positioning and 

attitude determination, and the state propagation is 

modelled as a random walk process  

2.4.3 UKF update 

The UKF simplifies nonlinear transformations by 

approximating the probability distribution rather 

than the function itself  It represents the state 

distribution as a Gaussian Random Variable (GRV) 

using a minimal set of sample points that accurately 

capture its mean and covariance  Propagating these 

points through a nonlinear system preserves the 

posterior mean and covariance up to the third order 

via the unscented transformation  To enhance 

numerical stability and reduce singularity risks, we 

propose an integrated positioning and attitude 

determination method based on UKF for SHM  

Starting with the unscented transformation, the 

nonlinear measurement model of (8) is expressed in 

a function as 

𝐲𝑘|𝑘−1 = 𝒴(𝐗𝑘|𝑘−1)

= 𝐇1𝛿𝐛𝑟0𝑟1,𝑘|𝑘−1 + 𝐇2𝐹(𝐪𝑘|𝑘−1) + 𝐇3𝛿𝐍𝑘|𝑘−1
  (10) 

To calculate the statistics of 𝐲𝑘|𝑘−1 , we form a 

matrix 𝐙 with 2𝑛𝑥 + 1 sigma vectors as 

{
 
 

 
 
𝐙0 = 𝐗𝑘|𝑘−1

𝐙𝑖 = 𝐗𝑘|𝑘−1⊕(√(𝑛𝑥 + 𝛾)𝐒𝐗𝑘|𝑘−1)𝑖
, 𝑖 ∈ (1⋯𝑛𝑥)

𝐙𝑗 = 𝐗𝑘|𝑘−1⊕ (−√(𝑛𝑥 + 𝛾)𝐒𝐗𝑘|𝑘−1)𝑗−𝑛𝑥
, 𝑗 ∈ (𝑛𝑥 + 1⋯2𝑛𝑥)

,(11) 

where 𝑛𝑥  is the number of unknow parameters, 

𝐒𝐗𝑘|𝑘−1 = 𝐶ℎ𝑜𝑙(𝓟𝑘|𝑘−1) is the square-root matrix 

of 𝓟𝑘|𝑘−1 , and calculated based on the Cholesky 

factorization. The operation ⊕ is defined as 

𝐗𝑘|𝑘−1⊕ 𝛿𝐗 ≜ [

𝐛𝑟0𝑟1,𝑘|𝑘−1 + 𝛿𝐛𝑟0𝑟1
𝐸𝑥𝑝(𝛿𝛉) ∘ 𝐪𝑘|𝑘−1
𝐍𝑘|𝑘−1 + 𝛿𝐍

].  (12) 

The corresponding weights for calculating the mean 

value and covariance are defined as 

{

𝑊0
𝑚 = 𝛾 (𝑛𝑥 + 𝛾)⁄

𝑊0
𝑐 = 𝛾 (𝑛𝑥 + 𝛾)⁄ + (1 − 𝛼2 + 𝛽)

𝑊𝑖
𝑚 = 𝑊𝑖

𝑐 = 1 (2(𝑛𝑥 + 𝛾))⁄ , 𝑖 ∈ (1⋯2𝑛𝑥)

  (12) 

where 𝛾 = (𝛼2 − 1)𝑛𝑥  is a scale parameter; The 

parameter 𝛼 governs the dispersion of sigma points 

around 𝐗𝑘|𝑘−1. A practical rule of thumb suggests 

set 𝑛𝑥 + 𝛾 = 3  when assuming 𝐗𝑘|𝑘−1  follows a 

Gaussian distribution (Julier et al., 2000). 𝛽 serves 

to integrate prior knowledge regarding the 

distribution of 𝐗𝑘|𝑘−1 , and 𝛽 = 2  is considered 

optimal for Gaussian distributions (Wan and Van 

Der Merwe 2000). (√(𝑛𝑥 + 𝛾)𝐒𝐗𝑘|𝑘−1)𝑖
 denotes 

the 𝑖𝑡ℎ  row of the matrix. The sigma vectors 𝐙𝑖 , 
where 𝑖 ranges from 0 to 2𝑛𝑥, undergo propagation 

via the nonlinear function (10), which are written as 

𝐲𝑘|𝑘−1
𝑖 = 𝒴(𝐙𝑖), 𝑖 ∈ (0⋯2𝑛𝑥)  (13) 

Their weighted mean of the transformed 

observations is then calculated as 

𝐲̅𝑘|𝑘−1 = ∑ 𝑊𝑖
𝑚𝐲𝑘|𝑘−1

𝑖2𝑛𝑥
𝑖=0   (14) 

The corresponding covariance (also known as 

innovation covariance) is computed through 

𝓟𝐲𝐲 = ∑ 𝑊𝑖
𝑐(𝐲𝑘|𝑘−1

𝑖 − 𝐲̅𝑘|𝑘−1)
2𝑛𝑥
𝑖=0 (𝐲𝑘|𝑘−1

𝑖 − 𝐲̅𝑘|𝑘−1)
⊤
+ 𝐑𝑘(15) 

The cross covariance between 𝐗𝑘|𝑘−1 and 𝐲̅𝑘|𝑘−1 is 

calculated as 

𝓟𝐗𝐲 = ∑ 𝑊𝑖
𝑐(𝐙𝑖⊖𝐙0)(𝐲𝑘|𝑘−1

𝑖 − 𝐲̅𝑘|𝑘−1)
⊤2𝑛𝑥

𝑖=0 , (16) 

and the corresponding operation of ⊖ is defined as 

𝐙𝑖⊖𝐙0 ≜

[
 
 
 
𝐛𝑟0𝑟1,𝑘|𝑘−1
𝑖 − 𝐛𝑟0𝑟1,𝑘|𝑘−1

0

𝐿𝑜𝑔 (𝐪𝑘|𝑘−1
𝑖 ∘ (𝐪𝑘|𝑘−1

0 )
−1
)

𝐍𝑘|𝑘−1
𝑖 − 𝐍𝑘|𝑘−1

0
]
 
 
 

  (17) 

The UKF gain matrix 𝐊𝑘 is then derived by solving 

the below equation 

𝐊𝑘 = 𝓟𝐗𝐲𝓟𝐲𝐲
−1, (18) 

The updated state vector is calculated as 

𝐗𝑘 = 𝐗𝑘|𝑘−1⊕ (𝐊𝑘(𝐘𝑘 − 𝐲̅𝑘|𝑘−1)) (19) 

The posteriori covariances is then obtained as 

𝓟𝑘 = 𝓟𝑘|𝑘−1 − 𝐊𝑘𝓟𝐲𝐲𝐊𝑘
⊤  (20) 

2.5 Ambiguity resolution 

After we get the float solution, we need to resolve 

the estimates of float ambiguities to integers for 
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improving the performances of positioning and 

attitude determination. 

The estimated double-differenced ambiguities 𝐍 

and their covariance matrix 𝓟𝐍,𝐍 are seen as input 

arguments of the Least-Squares Ambiguity 

Decorrelation (LAMBDA) method (Teunissen 

1995) to resolve the ambiguities, the resolved 

integer ambiguities is written as 

𝐍̌ = 𝐿𝐴𝑀𝐵𝐷𝐴(𝐍,𝓟𝐍,𝐍)  (21) 

The position and attitude parameters with ambiguity 

resolution is then updated as 

{
𝐛̌𝑟0𝑟1,𝑘 = 𝐛𝑟0𝑟1,𝑘 +𝓟𝐛,𝐍𝓟𝐍,𝐍

−1 (𝐍 − 𝐍̌)

𝐪̌𝑘 = 𝐸𝑥𝑝 (𝓟𝛉,𝐍𝓟𝐍,𝐍
−1 (𝐍 − 𝐍̌)) ∘ 𝐪𝑘

. (22) 

where 𝓟𝐛,𝐍, 𝓟𝛉,𝐍 are submatrix extracted from 𝓟𝑘, 

denoting cross correlations between baseline vector 

𝐛, ambiguity 𝐍, and rotation vector 𝛉  

3 Dataset and configurations 

In this paper, we utilize the dataset from the 

GeoSHM demonstration project (Meng et al., 

2018), which was designed to develop an innovative 

system for monitoring large bridges, with the Forth 

Road Bridge in the UK serving as a case study. 

Specifically, we focus on data from two GNSS 

receivers mounted on the middle span of the bridge 

to evaluate the integrated positioning and attitude 

determination algorithm. The lateral and vertical 

displacements of the bridge are more sensitive to 

external factors such as wind and vehicle loads, 

leading to variations in roll and heading angles. 

Since a single baseline cannot determine 3D 

attitude, we constrain the pitch angle to zero degrees 

by setting its initial noise and process noise to zero 

in the UKF. 

 

 
Figure 2. Forth road bridge and two GNSS receivers 𝑟1, 

𝑟2 mounted on the middle span of the bridge 

To test the algorithm under challenging conditions, 

we analyse data collected during a period of high 

wind speeds from January 2 to January 18, 2021, 

which caused significant lateral displacements of 

the bridge. The flowchart of data processing is 

illustrated in Figure 3. The data processing 

strategies are listed in Table 1. 

 
Figure 3. Flowchart of data processing 

Table 1. Data processing strategies 

Items Processing strategies 

GNSS signals 
GPS: L1, L2 

Galileo: E1, E5a 

Sampling rate 10 s 

Satellite orbit and 

clock 
Broadcast ephemeris 

Observation noise 

0.6 m and 0.01 cycles for 

undifferenced code and 

phase measurements 

Weighting strategy Elevation angle dependent  

Ambiguity 

resolution 

The double-differenced 

ambiguities are resolved 

to integers by partial 

LAMBDA with a 

minimum success rate of 

99.5% and ratio test with a 

threshold value of 3 

Anemometer

Leica GNSS Receiver

Initialize state vector , covariance 

matrix , process noise 

Set the initial noise and process noise of 

the pitch angle parameter to zero 

Time update with a random walk process 

use Eq (9)

Generate sigma points with Eq (11)

Propagate sigma points through the 

measurement model of Eq (10)

Compute the mean value of propagated 

measurements with Eq (14), 

covariance with Eq (15) and cross-

variance with Eq (16)

Calculate Kalman gain matrix with Eq

(18), update state vector with Eq (19) and 

its variance matrix with Eq (20)

Ambiguity resolution succeeded?

Derive integer ambiguity fixed solution 

with Eq (22)

No

Yes
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4 Results and analysis 

We use one base station 𝑟0 and two monitoring 𝑟1, 

𝑟2  to calculate the displacement of 𝑟1  and 

determining the roll and heading of the middle span, 

as illustrated in Figures 1 and 2. For comparison, we 

use RTKLib (Takasu and Yasuda 2009) to calculate 

the bridge displacements and attitude. The 

displacement is derived from the RTKLib baseline 

solution 𝑟0𝑟1, while the attitude is calculated as: 

{
 
 

 
 𝑟𝑜𝑙𝑙 = 𝑎𝑟𝑐𝑠𝑖𝑛 (

𝐛𝑟1𝑟2,𝑑𝑜𝑤𝑛
𝑏

‖𝐛𝑟1𝑟2‖
)

ℎ𝑒𝑎𝑑𝑖𝑛𝑔 = 𝑎𝑟𝑐𝑠𝑖𝑛 (
𝐛𝑟1𝑟2,𝑒𝑎𝑠𝑡
𝑛

√(𝐛𝑟1𝑟2,𝑒𝑎𝑠𝑡
𝑛 )

2
+(𝐛𝑟1𝑟2,𝑛𝑜𝑟𝑡ℎ

𝑛 )
2
)

  (22) 

where 𝐛𝑟1𝑟2,𝑑𝑜𝑤𝑛
𝑏  is the down component expressed 

in b-frame for baseline 𝑟1𝑟2 ; ‖𝐛𝑟1𝑟2‖  means the 

baseline length; 𝐛𝑟1𝑟2,𝑒𝑎𝑠𝑡
𝑛  and 𝐛𝑟1𝑟2,𝑛𝑜𝑟𝑡ℎ

𝑛  are east 

and north components expressed in 𝑛-frame. 

4.1 Positioning performances 

Figure 4 illustrates the lateral, longitudinal, and 

vertical displacements at the bridge’s middle span, 

i.e. the point indicated as 𝑟1 in Figure 1 and Figure 

2. The corresponding wind speed data is plotted in 

Figure 5. The analysis reveals a strong correlation 

between the bridge displacements and wind speed. 

Structurally, the bridge exhibits higher stiffness in 

the longitudinal direction, resulting in longitudinal 

displacements that fluctuate randomly around zero 

with a standard deviation (STD) of 0.011 m. These 

longitudinal displacements are notably smaller 

compared to the lateral and vertical displacements. 

 

Figure 4. Lateral, longitudinal and vertical 

displacement at the bridge’s middle span. 

A comparison of Figures 4 and 5 reveals a strong 

correlation between wind speed variations and both 

lateral and vertical displacements. Notably, the 

cross-correlation in the lateral direction reaches 

90.1%. From Figure 5, significant wind activity is 

observed on January 9–11 and January 16, 

corresponding to periods of large lateral and vertical 

displacements. Since the lateral wind speed is 

generally stronger than the vertical wind speed, the 

lateral displacements are also more pronounced than 

the vertical displacements during these periods. 

 

Figure 5. Wind speed in the lateral, longitudinal, 

and vertical directions at the bridge’s middle span  

The positioning differences compared to the 

RTKLib solutions are presented in Figure 6. The 

RMS values for the lateral, longitudinal, and 

vertical components are 0.005 m, 0.009 m, and 

0.015 m, respectively. The overall RMS values 

shown in Figure 6 represent the combined errors 

from both the integrated displacement and attitude 

determination (IDAD) solutions and the RTKLib 

solutions, which can be expressed as: 

𝑅𝑀𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = √𝑅𝑀𝑆𝐼𝑃𝐴
2 + 𝑅𝑀𝑆𝑅𝑇𝐾𝐿𝑖𝑏

2 ,     (23) 

where 𝑅𝑀𝑆𝐼𝑃𝐴 and 𝑅𝑀𝑆𝑅𝑇𝐾𝐿𝑖𝑏 denote the accuracy 

of the IDAD and RTKLib solutions, respectively 

Assuming the IDAD and RTKLib solutions have 

the equal accuracy, then we get: 𝑅𝑀𝑆𝐼𝑃𝐴 =

𝑅𝑀𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙 √2⁄ . Therefore, the IDAD method can 

determine the bridge displacement with RMS 

values 0.004 m, 0.006 m and 0.011 m at lateral, 

longitudinal and vertical components. 
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Figure 6. Positioning differences between the 

integrated positioning and attitude determination 

solutions and the RTKLib solutions. 

4.2 Results of attitude determination 

The bridge roll and heading variations are presented 

in Figure 7. When the large-span bridge is subjected 

to uneven external forces along its longitudinal 

direction (such as uneven wind force), it may 

experience longitudinal twisting. This process 

causes the bridge to rotate along its length, resulting 

in a change in the roll angle. Because of the strong 

wind occurred on January 11 and 16, we can see 

obvious roll angle fluctuations of 0.1 degrees. These 

fluctuations reflect small-scale side-to-side 

rotations of the midspan around the bridge’s 

longitudinal axis. 

 
Figure 7. Determined roll and heading variations from 

January 2nd to 18th. 

The bridge heading variation is also shown in Figure 

7. The heading angle represents changes in the 

bridge’s overall orientation, typically occurring 

when the bridge is subjected to lateral or oblique 

wind forces. These forces can induce rotational 

movement in the front and rear sections of the 

bridge, leading to variations in the heading angle. 

Although the variations are minimal, slight heading 

changes can still be observed on January 11 and 16, 

coinciding with periods of strong lateral winds. 

Figure 8 illustrates the roll and heading differences 

between the IDAD solutions and RTKLib solutions. 

The calculated RMS values for the roll and heading 

angles are 0.008 degrees and 0.005 degrees, 

respectively. Similarly, we assume equal accuracy 

for the IDAD and RTKLib solutions, and apply the 

error propagation law from (23), it can be concluded 

that the IDAD method determines the roll and 

heading angles with accuracies of 0.006 degrees and 

0.004 degrees, respectively. It is important to note 

that the accuracy of the estimated attitude also 

depends on the baseline length; a longer baseline 

results in higher attitude determination accuracy. 

 
Figure 8. Roll and heading differences between the 

IDAD solutions and RTKLib solutions. 

5 Conclusions and outlooks 

Position and attitude information are critical for 

SHM of large bridges. GNSS-based integrated 

positioning and attitude determination is a complex 

nonlinear function. This contribution is the first to 

explore integrated positioning and attitude 

determination for SHM. We propose a simultaneous 

positioning and attitude determination method 

based on UKF. GNSS data collected from the Forth 

Road Bridge in the UK are used to evaluate the 

algorithm. The results demonstrate that the 

proposed method can estimate lateral, longitudinal, 

and vertical bridge displacements with accuracies of 

0.004 m, 0.006 m, and 0.011 m, respectively, which 

are comparable to those from the classical RTK 

method. More importantly, it can simultaneously 

determine the bridge’s attitude with accuracies of 

0.006 degrees in roll and 0.004 degrees in heading. 

Both the estimated position and attitude can 

accurately reflect the displacement and attitude 

changes caused by strong wind in the test case. 
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In this study, the validation of GNSS-derived roll 

and heading results was primarily conducted 

through consistency checks with wind load 

variations. However, due to the unavailability of 

independent reference data, such as IMU or 

acceleration measurements, a direct quantitative 

validation was not feasible. Recognizing this 

limitation, we will deploy IMU sensors in the near 

future, enabling independent assessment of the 

GNSS-derived attitude solutions and further 

reinforcing the reliability of the proposed method. 
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