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Abstract 

Digital elevation models (DEMs) are an important data product used in several geodetic applications 
to estimate changes associated with infrastructure management, rockfalls, landslides, soil migration, 
and beach loss and accretion. Current data acquisition methodologies often require integration of 
several point-cloud datasets from diverse platforms and sensors into a single DEM by leveraging the 
advantages of each dataset. However, optimizing the combination of these datasets is challenging 
because each dataset/sensor/platform has different measurement capabilities and acquisition 
methodologies, resulting in varying uncertainty structures. Further, the accuracy of individual point 
measurements can vary substantially within a single dataset. Rigorous uncertainty estimation is 
necessary to determine the optimal combination of measurements from these multi-sensor datasets 
to reliably estimate the elevation for each DEM cell. This paper uses rigorous error propagation and 
variance component estimation (VCE) to estimate the uncertainty throughout each point-cloud 
dataset. The updated uncertainty estimation then allows each dataset to be optimally weighted in the 
combined DEM. To demonstrate this methodology, we use datasets from terrestrial laser scanning 
(TLS), small uncrewed aircraft surveys (sUASs) with both imaging (photogrammetric) and Light 
Detection and Ranging (lidar) sensors to develop multi-epoch and multi-dataset DEMs for a test site 
at the Tumwata Village (Oregon, USA). The proposed method results in more robust DEMs with 
higher reliability, providing elevations with lower uncertainty compared to those developed without 
VCE. Finally, the elevations are accompanied by their own individual uncertainty estimations, which 
is useful to determine significant areas of change when analyzing multi-epoch datasets for change 
estimation or monitoring applications. 

Keywords: Digital elevation model, multi-sensor fusion, laser scanning, UAS lidar, point cloud, variance 

component estimation. 

 

Received: 9th December 2024. Revised: 24th February 2025. Accepted: 27th February 2025. 

 

1 Introduction  

One of the primary surveying products of mapping 

surveys is elevations in the form of Digital 

Elevation Models (DEMs). These elevations serve 

as the fundamental basis for several other 

engineering work such as landscape planning, 

earthwork volume calculations, stormwater 

drainage delineation, change analysis, and more. 

DEMs are often created to depict natural and man-

made surface change estimations in applications 

such as soil migration, landslides, rockfalls, beach 

loss and accretion, and urban growth (e.g., Bolkas 

et al., 2016; Fernández et al., 2020; Bolkas et al., 

2021; Bailey et al., 2022; Senogles et al., 2022; Li 

et al., 2024). Although DEMs offer a 2.5D 

representation, instead of a full 3D representation, 

they offer several advantages for spatial analysis 

including an easy-to-understand dataset format, 

ease of use, and efficient processing. Nowadays, 

DEMs can be derived from several platforms and 

methods including lidar and photogrammetric 

methods from terrestrial and aerial platforms. The 

availability of point cloud datasets from multiple 

sources in the same location is becoming more 

common, and their integration into a single DEM is 

often sought (Fernández et al., 2020; Okolie et al., 

2022; Sudra et al., 2023). However, optimizing their 
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combination is challenging because of the diverse 

uncertainty structures and data acquisition methods 

associated with each dataset. A rigorous uncertainty 

estimation of each dataset is necessary to apply 

proper weights in the elevation estimation of each 

grid cell. This paper demonstrates the use of 

rigorous error propagation and variance component 

estimation (VCE) to derive reliable uncertainty 

estimates for each dataset. Then, using these 

updated uncertainty estimates, the datasets are 

combined to produce a single DEM. The advantage 

of this approach is that the optimal combination of 

the diverse datasets using rigorous statistical 

methods can lead to more accurate and consistent 

DEMs. In addition, through this approach, each grid 

cell of the DEM is accompanied by a rigorous 

uncertainty estimation, which then can be used to 

detect statistically significant changes in monitoring 

and other change estimation applications.   

2 Methodology  

Point clouds are generally scattered and 

unstructured datasets with highly variable point 

densities. An interpolation process is necessary to 

structure the multi-sensor and multi-platform data 

into a DEM for many applications. The optimized 

DEM in each epoch is estimated through a 

combination of multiple datasets acquired from 

different platforms. First, we perform error 

propagation for each dataset to derive uncertainty 

estimates individually. In the second step, the DEM 

surface estimation and VCE estimation occur 

simultaneously. Through the VCE the uncertainty 

of each dataset is updated, and a refined DEM 

surface estimation estimates the elevations for each 

cell. This process is depicted in the flowchart of 

Figure 1.  

Figure 1. Flowchart outlining the proposed 

multiple sensor and platform DEM estimation. 

A frequent challenge of DEM estimation using 

multiple datasets is dealing with vegetated areas. 

While lidar methods can penetrate vegetation to 

some degree, this generally is not the case for 

photogrammetric methods. In either case, the 

presence of vegetation produces increased 

uncertainty within both laser and photogrammetric 

point clouds. The site used in this study is free of 

vegetation in order to clearly demonstrate, develop, 

and evaluate the proposed algorithm. Hence, the 

algorithm currently assumes that any vegetation has 

been successfully filtered. Note that cofactor matrix 

notation is used for the TLS, sUAS 

photogrammetry, and sUAS lidar error propagation. 

The assumption made in these equations is that the 

“correct” covariance matrix is known only after the 

VCE occurs, and that the cofactor matrices are 

scaled using the estimated variance components. 

2.1 TLS error propagation  

The TLS error propagation is based on the methods 

found in (Lichti and Gordon 2004; Lichti, 2005; 

Hartzell et al., 2015) with the cofactor matrix given 

as:  

𝐐𝑛𝑜𝑖𝑠𝑒(𝑇𝐿𝑆)

= [

𝑞𝜌
2 + 𝑞𝐵𝑊𝑟

2 0 0

0 𝑞𝜃
2 + 𝑞𝐵𝑊𝑎

2 0

0 0 𝑞𝛼
2 + 𝑞𝐵𝑊𝑎

2

] 
(1) 

where, 𝑞𝜌 is the ranging uncertainty, 𝑞𝜃 is the 

horizontal angular uncertainty, and 𝑞𝛼 is the vertical 

angular uncertainty. 𝑞𝐵𝑊𝑎
 is the angular uncertainty 

due to beam divergence, and 𝑞𝐵𝑊𝑟
 is the range 

uncertainty due to the beam width and incidence 

angle. The angular and range uncertainty due to 

beam divergence are calculated based on the 

methods of Glennie (2007); Hartzell et al. (2015). 

The uncertainty of the TLS point cloud is derived 

through error propagation as follows:  

𝐐𝐸𝑁𝐻(𝑇𝐿𝑆) = 𝐁𝐐𝑛𝑜𝑖𝑠𝑒(𝑇𝐿𝑆)𝐁
T + 𝐐𝑟𝑒𝑔(𝑇𝐿𝑆) (2) 

where 𝐐𝐸𝑁𝐻(𝑇𝐿𝑆) is the 3×3 cofactor matrix for each 

point of the point cloud, 𝐁 is the 3×3 matrix of 

partial derivatives of the laser scanner coordinates 

with respect to the laser scanner measurements, and  

𝐐𝑟𝑒𝑔(𝑇𝐿𝑆) is the 3×3 registration uncertainty for a 

scanner setup.  

2.2 sUAS Photogrammetry error 

propagation  

Obtaining uncertainty estimates from structure from 

motion (SfM) Multi-view Stereopsis (MVS) 

software can be challenging. Depending on the 

software used, the user can have no or limited 

information about the point cloud uncertainty. The 

uncertainties for the dense point cloud are 

interpolated from the sparse point cloud (tie point) 
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variance available in Metashape software (Agisoft 

LLC, 2019). To minimize interpolation errors, tie 

points are created to provide approximately 0.25 m 

average point spacing. This sampling provides 

sufficient detail for capturing uncertainty 

differences in the point cloud of this paper. 

Practitioners should consider an appropriate value 

for average point spacing based on the site 

characteristics and their proposed application. 

Ultimately, for each point of the sUAS 

photogrammetric point cloud we have a 3×3 

cofactor matrix of the coordinate uncertainties:  

𝑸𝐸𝑁𝐻(𝑠𝑈𝐴𝑆−𝑝ℎ𝑜𝑡𝑜)

= [

𝑞𝐸𝑠𝑈𝐴𝑆−𝑝ℎ𝑜𝑡𝑜

2 0 0

0 𝑞𝑁𝑠𝑈𝐴𝑆−𝑝ℎ𝑜𝑡𝑜

2 0

0 0 𝑞𝐻𝑠𝑈𝐴𝑆_𝑝ℎ𝑜𝑡𝑜

2

] 
(3) 

where 𝑸𝐸𝑁𝐻(𝑠𝑈𝐴𝑆−𝑝ℎ𝑜𝑡𝑜) is the 3×3 cofactor matrix 

for each point of the point cloud, 𝑞𝐸𝑠𝑈𝐴𝑆−𝑝ℎ𝑜𝑡𝑜

2 , 

𝑞𝑁𝑠𝑈𝐴𝑆−𝑝ℎ𝑜𝑡𝑜

2 , and 𝑞𝐻𝑠𝑈𝐴𝑆−𝑝ℎ𝑜𝑡𝑜

2  are the variances for 

each coordinate. 

2.3 sUAS lidar error propagation   

One of the epochs used in this paper was augmented 

with a sUAS lidar dataset, offering a third platform 

of observation. The uncertainty is derived through 

error propagation of the system’s error sources to 

the resulting point cloud. The sUAS lidar error 

propagation is based on the methods found in 

(Glennie, 2007; Bolkas et al., 2016), and the 

georeferencing approach of the DJI L1 sUAS lidar 

system (DJI 2024b; DJI 2024c). The covariance 

matrix is given as:  

𝐐𝑠𝑈𝐴𝑆(𝑙𝑖𝑑𝑎𝑟)

= [

𝐐𝐺𝑁𝑆𝑆

𝟎
𝟎
𝟎

𝟎
𝐐𝐼𝑀𝑈

𝟎
𝟎

𝟎
𝟎

𝐐𝐵𝑆

𝟎

𝟎
𝟎
𝟎

𝐐𝑠𝑐𝑎𝑛𝑛𝑒𝑟

] 
(4) 

where 𝐐𝑠𝑈𝐴𝑆(𝑙𝑖𝑑𝑎𝑟) is a 12×12 cofactor matrix of the 

sUAS lidar system consisting of several 3×3 

cofactor matrix including 𝐐𝐺𝑁𝑆𝑆 for the GNSS 

measurements, 𝐐𝐼𝑀𝑈 3×3 for the IMU angles, 𝐐𝐵𝑆 

for the boresight angles, and 𝐐𝑠𝑐𝑎𝑛𝑛𝑒𝑟 for the 

scanner unit. The uncertainty of the point cloud is 

derived through error propagation of the cofactor 

matrix in Eq. (4) using the sUAS lidar 

georeferencing equations as:  

𝐐𝐸𝑁𝐻(𝑠𝑈𝐴𝑆−𝑙𝑖𝑑𝑎𝑟) = 𝐁𝐐𝑠𝑈𝐴𝑆(𝑙𝑖𝑑𝑎𝑟)𝐁
T (5) 

where 𝐐𝐸𝑁𝐻(𝑠𝑈𝐴𝑆−𝑙𝑖𝑑𝑎𝑟) is the 3×3 cofactor matrix 

with the sUAS lidar point cloud coordinate 

uncertainties, and 𝐁 is the 3×12 matrix of partial 

derivatives of the georeferencing equation with 

respect to the individual sUAS lidar uncertainty 

components and measurements.  

2.4 sUAS lidar error propagation   

Linear interpolation is used to derive the elevations 

of the DEM with the following equation:  

𝑙 = 𝑝00 + 𝑝10𝐸 + 𝑝01𝑁 + 𝑝11𝐸𝑁 − 𝐻 = 0 (6) 

where, 𝑝00, 𝑝10, 𝑝01, 𝑝11 are the linear interpolation 

coefficient parameters to be estimated, and 𝐸,𝑁,𝐻 

are the point cloud coordinates. For each grid cell, 

the points in its vicinity (radius equal to half the grid 

spacing) are selected and Eq. (6) is evaluated. 

Therefore, the matrix of observations of Eq. (6) is in 

the following form:  

 𝐥 = [

𝐥𝑇𝐿𝑆

𝐥𝑠𝑈𝐴𝑆−𝑝ℎ𝑜𝑡𝑜

𝐥𝑠𝑈𝐴𝑆−𝑙𝑖𝑑𝑎𝑟

] (7) 

where, 𝐥𝑇𝐿𝑆, 𝐥𝑠𝑈𝐴𝑆−𝑝ℎ𝑜𝑡𝑜, 𝐥𝑠𝑈𝐴𝑆−𝑙𝑖𝑑𝑎𝑟 are the 

observations originating from each point cloud 

source. Their associated cofactor matrices are then 

given as:  

𝐐𝑙 = [

𝐐𝑙𝑇𝐿𝑆
𝟎 𝟎

𝟎 𝐐𝑙𝑠𝑈𝐴𝑆−𝑝ℎ𝑜𝑡𝑜
𝟎

𝟎 𝟎 𝐐𝑙𝑠𝑈𝐴𝑆−𝑙𝑖𝑑𝑎𝑟

] (8) 

where 𝐐𝑙 is the cofactor matrix of the observations 

/ interpolation per grid cell, 𝐐𝑙𝑇𝐿𝑆
, 𝐐𝑙𝑠𝑈𝐴𝑆−𝑝ℎ𝑜𝑡𝑜

, 

𝐐𝑙𝑠𝑈𝐴𝑆−𝑙𝑖𝑑𝑎𝑟
 are the cofactor matrices for each 

platform / dataset. These are derived through error 

propagation using Eq. (6) and the cofactor matrix of 

Eqs. (2), (3), and (5), which contain the coordinate 

variances. The size of these square matrices equals 

the number of points for each dataset for a specific 

grid cell. The Cofactor matrices are represented as a 

diagonal matrix for all three datasets. Cofactors 

were used because covariance information for the 

measurements was not available. Further, use of 

cofactors allowed for more efficient computations 

in developing this initial proof of concept. Lastly, 

covariance information can lead to sensitivity 

problems in the VCE if it cannot be accurately 

estimated. Future work will develop procedures to 

obtain and include covariance information by 

considering the spatial correlation of point cloud 

datasets.  
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It is assumed that any deviation from zero in Eq. (7) 

is due to the presence of measurement errors. 

Through VCE, the cofactor matrixes for each 

platform are scaled based on their local performance 

and contribution to the overall uncertainty. 

Therefore, Eq. (8) is modified as:  

𝐂𝑙 =

[
 
 
 
 
�̂�𝑇𝐿𝑆

2 𝐐𝑙𝑇𝐿𝑆
𝟎 𝟎

𝟎 �̂� 𝑠𝑈𝐴𝑆
−𝑝ℎ𝑜𝑡𝑜

2 𝐐𝑙 𝑠𝑈𝐴𝑆
−𝑝ℎ𝑜𝑡𝑜

𝟎

𝟎 𝟎 �̂� 𝑠𝑈𝐴𝑆
−𝑙𝑖𝑑𝑎𝑟

2 𝐐𝑙 𝑠𝑈𝐴𝑆
−𝑙𝑖𝑑𝑎𝑟]

 
 
 
 

 (9) 

where �̂�𝑇𝐿𝑆
2 , �̂�𝑠𝑈𝐴𝑆−𝑝ℎ𝑜𝑡𝑜

2 , �̂�𝑠𝑈𝐴𝑆−𝑙𝑖𝑑𝑎𝑟
2  are the 

variance component factors for each platform 

estimated through the VCE process. The VCE is 

performed using a simplified implementation of the 

best invariant quadratic unbiased estimates 

(BIQUE) approach (Koch 1986), which takes 

advantage of the structure of the cofactor matrices 

(Crocetto 2000) for disjunctive uncorrelated 

observation groups. This requires no correlation 

between dataset groups- i.e., the off-diagonal 

elements of matrix 𝐐𝑙 in Eq. (8) must be zero. This 

simplified approach is given as: 

 �̂�𝑖
2 =

𝐈𝑖
T𝐂𝑙𝑖

−𝟏𝐐𝑙𝑖𝐂𝑙𝑖
−𝟏𝐈𝑖

trace(𝐑𝑖𝐐𝑙𝑖𝐂𝑙𝑖
−𝟏)

 (10) 

where, the subscript i denotes the multi-platform 

dataset in each case (e.g., TLS, sUAS lidar, and 

sUAS photogrammetry), 𝐂𝑙𝑖 for each dataset is 

derived as 𝐂𝑙𝑇𝐿𝑆
= �̂�𝑇𝐿𝑆

2 𝐐𝑙𝑇𝐿𝑆
, 𝐂𝑙𝑠𝑈𝐴𝑆−𝑝ℎ𝑜𝑡𝑜

=

�̂�𝑠𝑈𝐴𝑆−𝑝ℎ𝑜𝑡𝑜
2 𝐐

𝑙𝑠𝑈𝐴𝑆−𝑝ℎ𝑜𝑡𝑜

, and 𝐂𝑙𝑠𝑈𝐴𝑆−𝑙𝑖𝑑𝑎𝑟
=

�̂�𝑠𝑈𝐴𝑆−𝑙𝑖𝑑𝑎𝑟
2 𝐐𝑙𝑠𝑈𝐴𝑆−𝑙𝑖𝑑𝑎𝑟

. Matrix 𝐑 is computed as: 

 𝐑 = 𝐐�̂�𝐂𝑙
−𝟏 (11) 

where 𝐐�̂� is the cofactor matrix of the adjustment 

residuals. The subscript i in Eq. (10) denotes the 

corresponding block-diagonal submatrix of matrix 

𝐑 for each dataset group. Having derived the 

variance component estimation, the linear 

interpolation and estimation steps are repeated to 

obtain a refined elevation and its associated 

uncertainty. In locations where only one dataset is 

present, the posterior variance is used to scale that 

dataset. When two or three datasets are present then 

VCE occurs to scale their cofactor matrices. The 

estimation takes place per grid cell; therefore, the 

variances are estimated based on the dataset 

characteristics in the vicinity of each grid cell. It is 

worth noting that modelling errors will also 

influence the interpolation in Eq. (6). For example, 

consider a case where the underlying surface 

consists of complex features (e.g., cliffs, walls, etc.). 

In such cases, linear interpolation would be 

insufficient to adequately capture these features. 

However, these issues are an inherent limitation in 

the ability of DEMs to represent complex surfaces. 

Although this model limitation would be expected 

to affect all datasets as well as the variance 

components in an absolute sense, it would likely 

have a minimal effect on their relative relationships. 

Therefore, the influence of these limitations in 

modelling techniques will be reflected in the 

elevation uncertainty because interpolation in 

complex areas will result in elevation estimations 

with higher uncertainty.  

2.5 Multi-epoch comparison  

Having constructed multi-platform / multi-sensor 

DEMs in each epoch, their elevation differences and 

change estimation can follow. We have constructed 

DEMs using the same grid pattern for consistency; 

therefore, elevation differences can be computed 

directly without further interpolation. The elevation 

difference between two corresponding grid cells is:  

ΔH𝐷𝐸𝑀𝑖,𝑖+1
= H𝐷𝐸𝑀𝑖+1

− H𝐷𝐸𝑀𝑖
 (12) 

where, ΔH𝐷𝐸𝑀𝑖,𝑖+1
 is the elevation difference 

between two DEMs observed in epochs i and i+1. 

H𝐷𝐸𝑀𝑖+1
 is the elevation at a grid cell in epoch i+1 

and H𝐷𝐸𝑀𝑖
 is the elevation at a grid cell in epoch i. 

The uncertainty of the elevation difference is 

derived through error propagation:  

𝜎ΔH𝐷𝐸𝑀𝑖,𝑖+1
= √𝜎H𝐷𝐸𝑀𝑖+1

2 − 𝜎H𝐷𝐸𝑀𝑖

2  (13) 

where, 𝜎ΔH𝐷𝐸𝑀𝑖,𝑖+1
 is the uncertainty in the DEM 

elevation difference between two epochs, 𝜎H𝐷𝐸𝑀𝑖
 

and 𝜎H𝐷𝐸𝑀𝑖+1
 are the elevation uncertainties for each 

DEM, which are computed through error 

propagation (after VCE) in the linear interpolation 

step of Eq. (6). Significant changes are then 

estimated at the 95% confidence level as follows:  

|ΔH𝐷𝐸𝑀𝑖,𝑖+1
| ≥ 𝑡1−𝛼/2,𝑑𝑓 × 𝜎ΔH𝐷𝐸𝑀𝑖,𝑖+1

 (14) 

where, 𝑡1−𝛼/2,𝑑𝑓 is the Student’s critical value for 

α= 0.05 level (two tail test) and 𝑑𝑓 are the degrees 

of freedom equal to the sum of points in the grid 

cells for the two DEMs. The elevation differences 

between two epochs (ΔH𝐷𝐸𝑀𝑖,𝑖+1
) are considered 
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significant when they exceed threshold 𝑡0.025,𝑑𝑓 ×

𝜎ΔH𝐷𝐸𝑀𝑖,𝑖+1
.  

3 Research Site and Datasets   

The research site is the Tumwata Village, formerly 

known as the Blue Heron Paper Mill, located at 

Willamette Falls, in Oregon City, Oregon. This 

historic site is currently under demolition in 

multiple phases as part of the effort to restore the 

ecological state of the site 

(https://www.tumwatavillage.org). The site has 

been routinely scanned to create a digital twin of the 

site to support a variety of applications, including 

preservation of important archaeological 

information, demolition and construction tracking, 

and floodplain analysis. Figure 2 depicts the site 

location and identifies the areas where multi-

platform datasets were collected. Table 1 lists the 

areas and datasets that are available in each epoch 

and indicates which buildings have been 

demolished. Note that some of the buildings in areas 

1 and 3 were demolished after the 2021 data 

collection. 

 
Figure 2. The Tumwata Village in Oregon City, 

OR. The boxes outline the locations that are 

analyzed in this paper. The circles show the 

locations of the TLS setups capturing data within 

the four areas in 2022. 

Table 1. Multi-platform data availability. P: sUAS 

Photogrammetry, L: sUAS lidar, T: terrestrial laser 

scanning. 
Area 2021 2022 2023 Notes 

1 P+T P+L+T P+T 
Demolition in 

2021 

2 P+T P+L+T P+T - 

3 P+T P+L+T P+T 
Demolition in 

2021 

4 P+T P+L+T P+T - 

Table 2 summarizes the average point spacing for 

each area, dataset, and epoch. Point spacing is 

generally between 1.0 cm to about 3.5 cm; however, 

the TLS dataset point spacing is more variable and 

depends on the number of setups and coverage in 

each area and epoch. For example, only a few setups 

were used in Areas 2 and 4 of the 2023 survey, 

resulting in data gaps and lowered average point 

spacing. 

3.1 sUAS photogrammetry  

Two sUAS photogrammetry systems were used in 

data collection. A DJI Phantom4 Pro was used in 

2021, capturing approximately 1,200 photographs. 

A DJI Matrice with DJI P1 payload was deployed in 

2022 and 2023 (DJI 2024a), resulting in about 2,000 

and 1,200 photographs, respectively. Post-

processed kinematic (PPK) GNSS data logged 

during the flights enabled precise estimation of the 

position of each frame to improve robustness in the 

photogrammetric process. Agisoft Metashape 

software was used to generate dense point cloud 

data through SfM and MVS processes following the 

guidelines in Over et al. (2021). The resulting 

ground sample density (GSD) for the point clouds 

in the three epochs were 4.2 cm, 2.5 cm, 3.0 cm for 

2021, 2022, and 2023, respectively. 

Table 2. Average point spacing for each area, 

dataset, and epoch. Units: cm. 

Dataset Epoch 
Area 

1 

Area 

2 

Area 

3 

Area 

4 

TLS 2021 4.9 6.0 5.4 3.5 

TLS 2022 1.6 3.3 2.1 2.8 

TLS 2023 1.6 15.0 3.7 12.8 

sUAS 

photo. 
2021 3.7 4.1 3.2 4.3 

sUAS 

photo. 
2022 2.2 2.4 2.4 2.4 

sUAS 

photo. 
2023 2.8 3.0 2.8 3.0 

sUAS 

lidar 
2022 3.5 1.0 2.5 2.2 

3.2 sUAS lidar  

The sUAS lidar data were collected using a DJI 

Matrice 300 carrying the DJI L1 sensor (DJI 2024b; 

DJI 2024c) in the 2022 campaign. The sUAS system 

is quoted as being capable of achieving a horizontal 

accuracy of 10 cm at 50 m and vertical accuracy of 

5 cm at 50 m, both at the 1-σ level. The 

specifications state that the lidar ranging accuracy is 

3 cm at 100 m and the angular accuracy is 0.05º (1-

σ) with beam divergence of 0.28º (vertical) and 

0.03º (horizontal) (Livox 2024). After post-

processing the IMU angular measurement 

accuracies are quoted as 0.15º (1-σ) for yaw, and 

0.025º (1-σ) for pitch and roll. The pulse rate is 

https://www.tumwatavillage.org/
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240,000 points / second for single return, 480,000 

points / for dual return and 720,000 points/ second 

for triple return. Data were collected at an altitude 

of 60 m using the dual return option and maintaining 

an overlap of about 50% between adjacent swaths. 

3.3 Terrestrial laser scanning  

TLS data were collected using a Leica Scan Station 

P50 (Leica Geosystems, 2024) with a resolution of 

3 mm at 10 m. The scanner has a range accuracy of 

1.2 mm + 10 ppm (1-σ), horizontal and vertical 

angular accuracy of 8˝, and beam divergence of 0.23 

mrad (full width at half maximum). Scan 

registration was performed using a combination of 

cloud-to-cloud surface matching and targets 

distributed across the scene. Several target 

coordinates were obtained from a network 

adjustment of a control survey combining static 

GNSS baseline surveys on ground control points 

with total station traverse measurements. The 

registration uncertainty was estimated using the 

target registration residuals and typically within 5 

mm.  

4 Results  

4.1 VCE Results  

Table 3 provides the elevation uncertainty for each 

dataset, area, and epoch. Only elevation uncertainty 

is shown for simplicity and because it is the primary 

component of a DEM.  

Table 3. Median elevation uncertainty for each 

area, dataset, and epoch. Units: mm. 

Dataset Epoch 
Area 

1 

Area 

2 

Area 

3 

Area 

4 

TLS 2021 7.3 4.5 3.3 3.4 

TLS 2022 2.6 4.9 3.0 2.5 

TLS 2023 2.7 22.5 20.4 2.7 

sUAS 

photo. 
2021 50.2 58.3 94.6 70.2 

sUAS 

photo. 
2022 5.8 32.4 14.2 6.4 

sUAS 

photo. 
2023 5.2 18.3 5.7 5.6 

sUAS 

lidar 
2022 59.4 45.6 61.3 59.0 

The TLS survey, as expected, has the lowest 

propagated uncertainty apart from a couple of areas 

that only contain sparse data (Table 2) from long-

range scans observed at high incidence angles. The 

propagated elevation uncertainty of the sUAS lidar 

survey is consistent with the manufacturer 

specifications. The sUAS photogrammetric survey 

shows more variable results due to the different 

aircrafts and sensors that were used for each epoch. 

The data obtained from the DJI Phantom 4 Pro 

platform used in 2021 show substantially higher 

uncertainty compared with the DJI Matrice used in 

2022 and 2023. Using Eq. (6) and the cofactor 

matrices of Eqs. (2), (3), and (5) the vertical and 

horizontal coordinate uncertainties are propagated 

to each interpolated elevation. Through VCE the 

covariance matrix of each dataset is then scaled. 

Table 4 shows the median scale estimated for each 

area, dataset, and epoch. Note unitless scales 

(standard deviation) are provided for the covariance 

matrix in Eq. (9), which do not directly correspond 

to those in Table 3, because both the elevation and 

horizontal uncertainty contribute to interpolation 

error.  

Table 4. Median VCE results for each area, 

dataset, and epoch. The standard deviation is 

provided instead of the variance to assist with 

interpretation. Units: unitless. 

Dataset Epoch 
Area 

1 

Area 

2 

Area 

3 

Area 

4 

TLS 2021 0.25 0.17 0.16 0.41 

TLS 2022 0.41 0.21 0.95 0.80 

TLS 2023 0.96 0.17 0.45 0.71 

sUAS 

photo. 
2021 0.20 0.10 0.13 0.11 

sUAS 

photo. 
2022 1.92 0.16 0.80 0.62 

sUAS 

photo. 
2023 0.69 0.14 0.45 0.55 

sUAS 

lidar 
2022 0.44 0.51 1.71 0.48 

Figure 3 provides a visual representation of the 

scales for each grid cell to assist with interpretation. 

The uncertainty appears to be overestimated for 

almost all datasets, with a couple of exceptions. A 

few sections have been highlighted to guide the 

discussion. For instance, in Figure 3a, the sUAS 

photogrammetric dataset results in higher scales, 

indicative of the overall higher reconstruction 

uncertainty. The TLS dataset contains high scales in 

an area containing a pile of logs. In Figure 3b an 

occlusion with the sUAS photogrammetric dataset 

leads to higher scales due to increased uncertainty. 

In Figure 3d for the sUAS photogrammetric dataset, 

an area of poor image alignment resulted in a small 

offset compared to the TLS dataset. Finally, the 

sUAS lidar dataset demonstrates consistent scales 

(and uncertainty), compared to the other two 

datasets. These results demonstrate the benefit of 

conducting surveys with multiple sensors, as a more 

complex and thorough statistical analysis can take 

place to evaluate and refine the uncertainties of each 
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dataset. Essentially, through the VCE approach, 

each dataset is checking the other for their 

consistency, which in turn allows identification of 

uncertainty deviations to update the covariance 

matrices. Furthermore, the results presented in 

Table 4 and Figure 3 demonstrate how point cloud 

uncertainty can be variable and primarily depends 

on the (1) sensor used, (2) the data collection 

strategy, (3) processing methods, and (4) the 

encountered surface characteristics.  

 

Figure 3. VCE results for each area and dataset in 

2022; (a) Area 1; (b) Area 2; (c) Area 3; (d) Area 

4. 

The VCE algorithm is implemented through a 

polynomial fit approach and thus can be influenced 

by the dataset containing the largest number of 

points. This becomes relevant in vegetated areas. If 

there are considerably more ground points (from 

lidar) than non-ground points (from 

photogrammetry) then the polynomial fit will favor 

the largest dataset and the variance of the non-

ground points, which are influenced by vegetation, 

will be scaled as having higher error. However, in 

cases where the non-ground points outnumber the 

ground points, the algorithm may consider that the 

correct fit is dictated by the non-ground points and 

the ground point variances will be scaled as having 

higher error. To resolve the conflict higher weights 

can be placed on the ground points (if the 

information exists through classification) and they 

can be constrained in each iteration to avoid the 

influence of non-ground points. Note that this was 

not implemented and tested here but is being 

considered in future work. Additional investigation 

and specific tests are needed to provide a thorough 

analysis and reach safer conclusions that are beyond 

the scope of this study. 

4.2 DEM and Uncertainty Estimation  

After the refinement of the covariance matrices, the 

DEM is created through linear interpolation using 

Eq. (6). In this section we provide three weighting 

schemes in the creation of the multi-sensor DEM, 

presented in increasing rigor. The first weighting 

scheme assumes that no information about the 

dataset uncertainty (and hence their weights) is 

available. Therefore, all datasets are given the same 

weight. This approach is most common in practice 

as most software packages do not provide users with 

the ability to weigh points in the modeling process. 

The second scheme considers the uncertainty from 

error propagation using the manufacturer 

specifications but without the application of VCE. 

The third scenario uses the refined uncertainty 

estimates [covariance matrix in Eq. (9)] using the 

scales that were presented in the previous section. 

This last scenario leverages the existence of 

multiple datasets in the same location to refine their 

uncertainty estimates (and associated weights). 

Table 5 shows the median DEM elevation 

uncertainty for the three difference weighting 

schemes.  

Table 5. Median DEM elevation uncertainty for 

three different weighting schemes in 2022.  
Dataset Area 1 Area 2 Area 3 Area 4 

Equal 

weights 
0.8 mm 1.4 mm 1.4 mm 1.5 mm 

Weights 

error prop. 
0.2 mm 0.7 mm 0.5 mm 0.3 mm 

Weights 

VCE 
0.1 mm 0.2 mm 0.4 mm 0.2 mm 
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As expected, the equal weighting scheme has the 

highest uncertainties because data points with high 

uncertainty are allowed to contribute equally with 

low uncertainty data points. The median uncertainty 

is at the level of 0.8 mm to 1.5 mm in the four areas 

that are examined here. The median uncertainties 

derived in the second scenario when the weights are 

estimated through error propagation are at the level 

of 0.2 mm to 0.7 mm for the four areas. When the 

weights are estimated through the proposed VCE 

scheme, the median elevation uncertainties are at 

the level of 0.1 mm to 0.4 mm. Figure 4 visually 

depicts the DEM elevation uncertainty for each 

weighting scheme in Area 4.  

 

Figure 4. Multi-sensor DEM uncertainty for each 

area in 2022; (a) Area 1; (b) Area 2; (c) Area 3; (d) 

Area 4. Each figure set shows three combination 

scenarios (1) equal weights, (2) weights from error 

propagation, and (3) weights from VCE. 

It is evident that when improper weights are used, 

the combined DEM will have high uncertainty as 

shown in the case of equal weights. However, we 

also observe that in the case of error propagation 

there is always a certain level of overestimation / 

underestimation of uncertainty for each dataset, 

which cannot lead to their optimal (in terms of 

uncertainty) DEM combination. An optimal multi-

sensor DEM estimation is possible when the dataset 

uncertainty is refined through a VCE process as 

demonstrated in this paper. Furthermore, an 

important outcome of the VCE multi-sensor 

combination is that areas of higher error in one of 

the three datasets are checked by the other datasets; 

therefore, their contribution is limited when using 

the refined weights. For instance, this happens in 

Area 4 close to trees that led to higher uncertainty 

and the poor image alignment. The level of 

improvement will vary based on the mismatch of 

each dataset in each area and the level of deviation 

from an optimal weighting scheme among the three 

datasets. The results in this section demonstrate the 

ability of the VCE approach to scale the original 

uncertainty of each dataset and optimally weight 

them to derive enhanced multi-sensor DEMs. 

4.3 Change estimation  

In the next step the multi-sensor DEMs are utilized 

to create multi-epoch comparisons and detect any 

changes between the 2021 and 2022 surveys and 

between 2022 and 2023 surveys in the four areas. 

Table 6 shows the percentage of cells that were 

found to significantly change between two epochs 

(between surveys 1 and 2 and between surveys 2 

and 3). In general, a high number of cells were 

found to change, with percentages ranging from 

88.3% to 100%. Note that this is an active 

construction site, undergoing active demolition; 

hence, significant changes are expected for much of 

the site. For instance, within Areas 1 and 3 the 

buildings that were present in epoch 1 were 

demolished in epoch 2. Furthermore, surface 

activity such as moving vehicles, construction 

workers moving, and natural environment changes 

(e.g., due to rain) also contribute. Comparing the 

three weighting schemes we notice differences at 

the level of 1-5% for the error propagation weights 

and VCE weights. The maximum difference 

between the two approaches was found in Area 3 

(epochs 2 vs 3). 
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Table 6. Percentage of cells that were detected to 

significantly change between surveys 1 and 2 and 2 

and 3. Total cell counts are: Area 1, 24974; Area 2 

2695; Area 3, 71649; Area 4; 42246. 

Dataset Epoch 
Area 

1 

Area 

2 

Area 

3 

Area 

4 

Equal 

weights 
1 vs 2 100% 89.9% 93.6% 88.3% 

Weights 

error 

prop. 

1 vs 2 100% 93.2% 93.9% 92.8% 

Weights 

VCE 
1 vs 2 100% 95.5% 94.4% 93.2% 

Equal 

weights 
2 vs 3 94.7% 97.0% 91.8% 91.9% 

Weights 

error 

prop. 

2 vs 3 95.0% 97.0% 95.0% 96.0% 

Weights 

VCE 
2 vs 3 93.7% 98.5% 90.4% 96.7% 

Figure 5 shows the number of cells detected as 

significantly changed, and Figure 6 shows the DEM 

differences between the two epochs. To emphasize 

lower values, the colorbar is limited to ± 20 mm. It 

is worth noting that only a few grid cells have 

differences less than ± 20 mm, which highlights the 

level of anthropogenic and construction activity at 

this site. We also notice that the biggest changes 

between the three weighting schemes are located 

near the center of the area, where through VCE 

weighting we observe that the DEM elevations 

differences tend to be at the level of ± 2-3 mm 

compared with ± 5 mm when estimated using the 

error propagation weights.  

 
Figure 5. Significant changes of Area 3, epoch 2 vs 

3; (a) equal weights, (b) weights from error 

propagation; (c) weights from VCE. 0 means no 

significant change and 1 means significant change 

at the 95% confidence level. 

5 Conclusions 

DEMs are an important mapping product for a wide 

range of applications including monitoring and 

change detection. The availability of multi-sensor 

datasets allows one to create optimized multi-sensor 

and multi-platform DEMs, which can leverage the 

benefits of each sensor and platform. However, their 

combination can be challenging due to the variable 

uncertainties inherent to each dataset. This paper 

implements rigorous error propagation and a VCE 

approach to obtain refined variances for each 

dataset and therefore construct DEMs through an 

optimal weighting of each point cloud dataset. The 

results of this paper demonstrated how the VCE 

effectively managed to scale each grid cell uniquely 

based on the local data uncertainty. The three 

weighting schemes tested here demonstrate that 

improper weighting between the dataset can lead to 

DEMs with higher uncertainty, and that, in all cases, 

the combination with weights derived from VCE 

presented the lowest uncertainty. This was also 

demonstrated in the epoch-to-epoch comparisons, 

where the VCE weights were able to provide an 

improved estimation of the differences between the 

two DEMs. Future work will focus on testing the 

algorithm in more sites and types of terrain to 

further validate the algorithm and expand its 

capabilities.  

 
Figure 6. DEM differences between epochs 2 vs 3 

for Area 3; (a) equal weights, (b) weights from 

error propagation; (c) weights from VCE. 

Acknowledgements 

Funding supporting the data collection was 

provided by the National Science Foundation (NSF) 

under awards 1937070 and 2228113, and the 



6th Joint International Symposium on Deformation Monitoring (JISDM) 7.-9. April 2025, Karlsruhe, Germany 

10 

 

National Geospatial Intelligence Agency GeoEscon 

program. Approved for public release, NGA-U-

2024-09711. We gratefully acknowledge the 

support of Leica Geosystems and Kuker Ranken in 

providing equipment and software for this study. 

The Confederated Tribes of the Grand Ronde 

Community of Oregon graciously provided access 

to the Tumwata Village site where the data were 

collected. Lastly, the authors acknowledge the 

efforts of the many Oregon State University 

Geomatics graduate students who assisted with the 

data collection. 

References  

Agisoft LLC. (2019). Forum, Topic: Point Cloud 

Variance; 

https://www.agisoft.com/forum/index.php?topic=

10805.0 [Accessed 4 October 2024] 

Bailey, G., Li, Y., McKinney, N., Yoder, D., 

Wright, W., Washington-Allen, R., (2022). 

Las2DoD: Change detection based on digital 

elevation models derived from dense point clouds 

with spatially varied uncertainty. Remote Sensing, 

14(7), 1537. 

Bolkas, D., Fotopoulos, G. Glennie, C., (2016). On 

the impact of a refined stochastic model for 

airborne LiDAR measurements. Journal of 

Applied Geodesy, 10(3), 185-196. 

Bolkas, D., Walton, G., Kromer, R., Sichler, T., 

(2021). Registration of multi-platform point 

clouds using edge detection for rockfall 

monitoring. ISPRS Journal of Photogrammetry 

and Remote Sensing, 175, 366-385. 

Crocetto, N., Gatti, M., Russo, P. (2000). Simplified 

formulae for the BIQUE estimation of variance 

components in disjunctive observation 

groups. Journal of Geodesy, 74, 447-457. 

DJI. (2024a). Zenmuse PI. 

https://www.dji.com/zenmuse-

p1?site=brandsiteandfrom=nav. [Accessed 7 

November 2024] 

DJI. (2024b). Zenmuse L1. https://www.dji.com/ 

zenmuse-l1/specs. [Accessed 7 November 2024] 

DJI. (2024c). Zenmuse L1 user manual. 

https://dl.djicdn.com/downloads/Zenmuse_L1/20

220119UM/Zenmuse_L1%20_User%20Manual_

EN_v1.2-1.pdf. [Accessed 7 November 2024] 

Glennie, C., (2007). Rigorous 3D error analysis of 

kinematic scanning LIDAR systems. Journal of 

Applied Geodesy, 1, 147-157.  

Hartzell, P.J., Gadomski, P.J., Glennie, C.L., 

Finnegan, D.C. and Deems, J.S., (2015). Rigorous 

error propagation for terrestrial laser scanning 

with application to snow volume uncertainty. 

Journal of Glaciology, 61(230), 1147-1158. 

Fernández, T., Pérez-García, J.L., Gómez-López, 

J.M., Cardenal, J., Calero, J., Sánchez-Gómez, M., 

Delgado, J. and Tovar-Pescador, J., (2020). 

Multitemporal analysis of gully erosion in olive 

groves by means of digital elevation models 

obtained with aerial photogrammetric and LiDAR 

data. ISPRS International Journal of Geo-

Information, 9(4), 260. 

Koch, K. R. (1986). Maximum likelihood estimate 

of variance components. Bulletin gæodésique, 60, 

329-338. 

Leica Geosystems (2024). Leica ScanStation P50 – 

Long Range 3D Terrestrial Laser Scanner. Leica 

Geosystems. https://leica-geosystems.com/en-

us/products/laser-scanners/scanners/leica-

scanstation-p50 [Accessed 7 November 2024] 

Li, P., Li, D., Hu, J., Fassnacht, F.E., Latifi, H., Yao, 

W., Gao, J., Chan, F.K.S., Dang, T., Tang, F., 

(2024). Improving the application of UAV-

LiDAR for erosion monitoring through 

accounting for uncertainty in DEM of difference. 

Catena, 234, 107534. 

Lichti, D.D. Gordon, S.J., (2004). Error propagation 

in directly georeferenced terrestrial laser scanner 

point clouds for cultural heritage recording. Proc. 

of FIG Working Week, Athens, Greece, May, 22-

27. 

Lichti, D.D., Gordon, S.J., Tipdecho, T., (2005). 

Error models and propagation in directly 

georeferenced terrestrial laser scanner networks. 

Journal of surveying engineering, 131(4), 135-

142. 

Livox. (2024). Avia Specs. Livox. 

https://www.livoxtech.com/avia/specs [Accessed 

8 November 2024] 

Okolie, C.J. and Smit, J.L., (2022). A systematic 

review and meta-analysis of Digital elevation 

model (DEM) fusion: Pre-processing, methods 

and applications. ISPRS Journal of 

Photogrammetry and Remote Sensing, 188, 1-29. 



6th Joint International Symposium on Deformation Monitoring (JISDM) 7.-9. April 2025, Karlsruhe, Germany 

11 

 

Over, J. S. R., Ritchie, A. C., Kranenburg, C. J., 

Brown, J. A., Buscombe, D. D., Noble, T., 

Sherwood, C.R., Warrick, J.A and Wernette, P. A. 

(2021). Processing coastal imagery with Agisoft 

Metashape Professional Edition, version 1.6—

Structure from motion workflow documentation 

(No. 2021-1039). US Geological Survey. 

https://pubs.usgs.gov/of/2021/1039/ofr20211039.

pdf [Accessed 7 November 2024] 

Senogles, A., Olsen, M. J., Leshchinsky, B. (2022). 

SlideSim: 3D landslide displacement monitoring 

through a physics-based simulation approach to 

self-supervised learning. Remote Sensing, 14(11), 

2644. 

Sudra, P., Demarchi, L., Wierzbicki, G., 

Chormański, J., (2023). A comparative 

Assessment of Multi-source Generation of Digital 

Elevation Models for Fluvial landscapes 

characterization and monitoring. Remote Sensing, 

15(7), 1949. 


