
6th Joint International Symposium on Deformation Monitoring (JISDM) 7.-9. April 2025, Karlsruhe, Germany

Building and Solving Probabilistic Instrument Models with CaliPy

Jemil Avers BUTT1,2,*

1 ETH Zurich IGP, Zurich, Switzerland, (jemil.butt@geod.baug.ethz.ch)
2Atlas optimization GmbH, Zurich, Switzerland, (jemil.butt@atlasoptimization.ch)

*corresponding author

Abstract

Probabilistic models of geodetic measurement instruments are essential ingredients for uncertainty quantifica-
tion and optimal estimation. Traditionally, these models are formulated and analyzed manually with inference
relying on classical maximum-likelihood-based parameter estimation. However, this approach typically falls
short when dealing with nonlinear models, non-Gaussian distributions, or latent random variables. To over-
come these limitations, we developed CaliPy (Calibration library Python), a Python library built on top of
Pyro and PyTorch. CaliPy is designed to facilitate the construction, solution, and exchange of probabilistic
instrument models by chaining together pre-built stochastic effects. It leverages advances in deep probabilis-
tic programming and automatic differentiation to perform automated Bayesian inference. In this paper we
demonstrate CaliPy’s architecture and practical application through examples involving instrument models
featuring drifts and noise. Our results highlight CaliPy’s ability to handle complex probabilistic models in a
unified framework, thereby offering significant benefits to the users of measurement instruments by streamlin-
ing model formulation, solution, and exchange while also providing a framework for implementing chainable
stochastic effects in a Python-friendly ecosystem.

Keywords: Probabilistic programming, Instrument models, Calibration, Stochastic models, Machine learning

1 Introduction

Interpreting real-world measurement data beyond
simple summary statistics requires a probabilistic
instrument model, i.e. a mathematical model of
the measurements that features randomness. Such
an instrument model tying observations to unknown
quantities of interest allows the allocation of ob-
served effects in the data to the assumed inner work-
ings of the measurement instrument or some abso-
lute standard (i.e. calibration, Phillips et al. (2001)).
Passing from descriptive to inductive statistics has
benefits ranging from the inclusion of prior domain
knowledge to the possibility of model checking,
comparison, and understanding in a fully Bayesian
workflow (Gelman et al., 2020).

As noticed in Gelman et al. (2020), Henderson et al.
(2010), such an iterative workflow enabling models
to be fitted quickly for the purpose of model explo-
ration and navigation is an advantage when models,
model components, and their relationship to the data
are not yet definitely established and the subject of

investigation. This is especially relevant to geodesy
where probabilistic models abound, see e.g. the
compilation in Neitzel (2021). For example, the de-
velopment of mathematical instrument models rep-
resenting terrestrial laser scanners (TLS) followed
a similar pattern with complexity increasing from
straightforward deterministic models over models
with multiple deterministic trend functions (Lichti,
2010) towards more stochastically oriented models
(Kerekes and Schwieger, 2020).

However, the standard workflow for geodetic model
development still seems to be centered around the
method of Least Squares (LS) estimation (Ghilani
and Wolf, 2006, pp. 8 -10) with model selection
constrained to those solvable via LS. Furthermore,
manually written computer code for the LS prob-
lems and their closed form solutions or heuristic it-
erative schemes are still the prevalent mode of im-
plementation and documentation which can have
negative implications for correctness and exchange-
ability of these instrument models. For the remain-
der of the paper, LS refers to traditional solution

1

6th Joint International Symposium on Deformation Monitoring (JISDM) 7.-9. April 2025, Karlsruhe, Germany

procedures for Gauss-Markov/Gauss-Helmert mod-
els (Niemeier, 2008, p. 172); mixed integer convex
optimization solvers are not considered.

In principle, probabilistic programming languages
(PPLs) such as Pyro (Bingham et al., 2018) enable
rapid building and solving (i.e inferring unknown
parameters and posteriors) of probabilistic models
thereby making them ideal for experimental geode-
tic data analysis. By combining the autodifferentia-
tion capabilities of packages like PyTorch (Paszke
et al., 2019) with probabilistic concepts like dis-
tributions, independence, and sampling, these lan-
guages unite formal probabilistic model building
with the convenience of automatic Bayesian infer-
ence. In practice, however, they are difficult to
use owing to the demanding theoretical probabilis-
tic background and the amount of PPL-specific ex-
pertise needed to operate them. As a consequence,
PPLs did so far not find the widespread adoption
that their deterministic predecessors did. As a mat-
ter of fact, the authors did not find any publication
from the areas of engineering geodesy or deforma-
tion monitoring employing PPLs.

CaliPy aims to bridge the gap between theoreti-
cally universal and practically applicable probabilis-
tic modeling by making geodetic instrument models
easy to create and solve by building on top of the
PPL Pyro and creating composable stochastic ef-
fects. With CaliPy, probabilistic models can be built
conveniently by chaining together these stochastic
effects and bespoke inference schemes are set up au-
tomatically. No manual calculations are necessary
that convert the model into a form suitable for LS
estimation. In short: Declaring a model is basically
the same as solving it.

In summary, the contributions of this work are:

• We describe CaliPy, a library for building and
solving probabilistic instrument models

• We illustrate CaliPy’s usage by applying it to
archetypic instrument modeling problems

Section 2 provides a review of classical instru-
ment modeling and introduces CaliPy as a library
for building and solving probabilistic instrument
models. Section 3 describes CaliPy’s architecture
and underlying principles while section 4 illustrates
CaliPy’s abstract design patterns by means of con-
crete practical applications. Section 5 concludes the
paper and outlines further developments.

2 Instrument models and CaliPy

2.1 Classic Approach to Instrument Mod-
els

Suppose that measurement data y= [y1, ...,ynnobs]
T ∈

Rnnobs×ny and input variables x = [x1, ...,xnnobs]
T ∈

Rnnobs×nx are given where nnobs is the number of ob-
servations, and nx,ny are the dimensions of a single
input variable or observation. The task of geodetic
data analysis is often to find the best estimates of
parameters θ ∈ Rnθ that stand in some generative
relationship to the measurement data y (Ghilani and
Wolf, 2006, p. 179).

The parameters θ may correspond to unknown co-
ordinates, deformation rates, instrument-specific bi-
ases, or other unobserved random or nonrandom
quantities of interest in our model. The input vari-
ables x represent known deterministic quantities,
e.g. the geometric configuration, meteorological
conditions, or the time of an experiment. The for-
mulation

y ∼ P(x,θ) (1)

declaring y as being distributed according to
P(x,θ) condenses these relations into a single
statement. The probabilistic models (1) have a role
similar to the observation equations in classical LS
and include the narrower stochastic models, which
are understood to be models for the covariance ma-
trix of a multivariate Gaussian dstribution (Ghilani
and Wolf, 2006, pp. 177 - 181). Estimating θ in the
most general sense is solved by converting the joint
distribution p(y,x,θ) into the posterior distribution
p(θ |y,x) of the parameters given the data by em-
ploying Bayes theorem. A popular point estimate θ̂

summarizing p(θ |y,x) is the Maximum Likelihood
(ML) estimator (Hastie et al., 2009, p. 265):

θ̂ML = argmaxθ p(y,x|θ)

The ML estimator is widely used in geodesy as for
linear models and a Gaussian assumption it is equiv-
alent to Least Squares (Hastie et al., 2009, p. 265)
via

θ̂LS = argminθ ∥A(x)θ − y∥2
2

= argmaxθ c0 ∗ exp
(
−∥A(x)θ − y∥2

2
c1

)
= argmaxθ p(y,x|θ)

2

6th Joint International Symposium on Deformation Monitoring (JISDM) 7.-9. April 2025, Karlsruhe, Germany

Here A(x) is a design matrix, c0,c1 are appropriately
chosen positive constants, and ∥ · ∥2 denotes the ℓ2-
Norm. The advantages of LS are its direct inter-
pretability as the ML estimate under Gaussian as-
sumption, the existence of closed form solutions to
the LS problem, and well-established auxiliary re-
sults like the variance of the estimates. Furthermore,
even when the Gaussian assumption might not hold,
the LS estimate still minimizes a meaningful mea-
sure of discrepancy.

The disadvantages of standard LS entail its inability
to handle in an systematic manner non-Gaussianity,
non-convex functions, latent unobserved variables
and discrete variables. For an overview of capabil-
ities, see Nievergelt (2000) and for examples de-
tailing the complexities of adopting LS for more
flexible random effects, nonconvex objectives, la-
tent variables, or discrete variables, see Schaf-
frin (2020),(Boyd and Vandenberghe, 2004, p. 9),
Bollen (1996), and Del Pia et al. (2014) respectively.
In combination with LS only delivering point es-
timates and not the full posterior distribution, this
suggests the use of more suitable Bayesian infer-
ence methods like Stochastic Variational Inference
(SVI).

2.2 Stochastic Variational Inference

SVI is an approximate inference procedure for ad-
dressing general Bayesian inference problems in a
data-heavy context and is employed by CaliPy to es-
timate unknown parameters and posterior distribu-
tions. The goal of SVI is to approximate the poste-
rior distribution p(θ |y,x) of the θ as well as possible
by finding an approximating distribution qφ from a
simple family of functions indexed by the parame-
ters φ . The objective function of SVI is the evidence
lower bound (ELBO) (Blei et al., 2017)

ELBO(qφ ,θD) = log pθD(y)

−KL(qφ (θS)∥pθD(θS|y,x)) (2)

for θ = (θD,θS) a split of θ into unknown deter-
ministic parameters θD and unobserved stochastic
variables θS. The name ELBO derives from the fact
that the Kullback-Leibler Divergence KL is nonneg-
ative which makes the right-hand side of equation 2
a lower bound for the log evidence. The ELBO en-
ables the dual goals of:

• Finding parameters θD corresponding to high
evidence pθD(y)

• Finding parameters φ such that qφ ap-
proximates well the posterior distribution
pθD(θS|y,x) of θS.

Maximizing the ELBO jointly maximizes the evi-
dence of the model and minimizes the divergence
between true posterior and approximate posterior. It
is the default objective measuring model quality in
the PPL Pyro (Bingham et al., 2018) which serves
as a basis for CaliPy. When there are unobserved
stochastic variables θS whose posterior needs to be
approximated, the gradients necessary for optimiz-
ing the ELBO have to be sampled instead of sim-
ply computed. When only deterministic parameters
are present, the ELBO degenerates to the maximum
likelihood objective log pθD(y) and therefore basi-
cally Least Squares if all involved distributions are
Gaussian.

2.3 Specifying Models in CaliPy

Maximizing the ELBO via SVI requires differenti-
ating pθD(·) and qφ (·) and sampling qφ (θS) but not
much else (Kingma and Welling, 2019, p.20). It is
therefore sufficient for SVI to specify a model func-
tion that determines the joint probability density
pθD(y,x,θS) (or equivalently likelihood and prior)
and to specify the variational distribution qφ (θS). In
Pyro, this is done by the two user-built Python func-
tions model() and guide() which might contain non-
linear transforms, sampling statements, and com-
plicated control flow. In CaliPy however, we em-
phasize a modular design built around pre- or user-
defined stochastic effects encoded in Python classes
like NoiseAddition or PolynomialTrend. Instantiat-
ing one such class leads to an object of well-defined
shape and conditional independence. Executing its
forward() method generates one sample of this ef-
fect. The code for a simple mean estimation is pro-
vided below for illustration purposes.

dims setup

data_dims = dim_assignment(dim_names = ['bd', 'ed'])
mu setup

mu_ns = NodeStructure(UnknownParameter)

mu_ns.set_dims(['Independent_dims'], data_dims[0:1])
mu_ns.set_dims(['Dependent_dims'], data_dims[1:2])
mu_object = UnknownParameter(mu_ns, name = 'mu')
noise setup

noise_ns = NodeStructure(NoiseAddition)

noise_ns.set_dims(['Independent_dims'], data_dims[0:2])
noise_object = NoiseAddition(noise_ns, name = 'noise')

The above is enough to specify the unknown mean
and noise for the model. As there are no unobserved
latent variables and therefore also no guide / varia-

3

6th Joint International Symposium on Deformation Monitoring (JISDM) 7.-9. April 2025, Karlsruhe, Germany

tional distribution needs to be defined, the informa-
tion necessary for SVI is complete. Integrating both
model and empty guide function into a CalipyProb-
Model instance allows for automatic inference.

class DemoProbModel(CalipyProbModel):
def __init__(self, **kwargs):

super().__init__(**kwargs)

integrate nodes

self.mu_object = mu_object

self.noise_object = noise_object

Define model by forward passing

def model(self, input_vars = None,
observations = None):
mu = self.mu_object.forward()

output = self.noise_object.forward((mu,

sigma_true), observations = observations)

return output
Define guide (trivial since no posteriors)

def guide(self, input_vars = None,
observations = None):
pass

demo_probmodel = DemoProbModel()

demo_probmodel.train(data)

Note that it is allowed to apply arbitrary differen-
tiable Pytorch functions to the output of the in-
termediate processing steps thereby providing the
possibility to build complicated stochastic interac-
tions that can represent nontrivial real-world behav-
ior. The command probmodel.train() works ex-
actly the same in these cases as well.

3 Architecture & Implementation

3.1 Software Architecture

The design goal of CaliPy is twofold: enable sim-
ple instrument model building, solving, and shar-
ing and maintain as much as feasible compatibility
to the Pytorch and Pyro ecosystems. We achieve
this by repackaging Pyro’s functionality into sep-
arate effects that represent nodes in a DAG and
can be chained to form a model without the users
spelling out all the details themselves. Users need
to call a prebuilt subclass (like UnknownParameter
or NoiseAddition) of the CalipyNode AbstractBase-
Class and combine it with a NodeStructure object
that encodes dimensions, sizes, and independence
assumptions. The result is an effect object with a
forward() method that produces concrete numbers
for forward simulations and keeps track of gradi-
ents and probabilities for the backward inference
pass. Model and guide function are integrated into a
CalipyProbModel object which manages inference
by compiling the problem and handing it to Pyro.
The procedure is illustrated in figure 1.

Figure 1. The user specifies models by calling
nodes, imprinting them with structure, and then
chaining the resulting effects together.

Apart from the three abstract classes CalipyNode,
NodeStructure, and CalipyProbModel, a collection
of utility functions act as an interface to Pyro and
support the user when designing new effects. Some
functions provide convenient, independence-aware
wrappers for Pytorch or Pyro functions while some
other constructs are entirely new. We introduced
for example the classes CalipyTensor, CalipyDim,
CalipyIndex that allow tensors to be associated
with dimensions, which subsequently can be de-
clared independent, subjected to subsampling, or
processed by further functions. This way of keep-
ing track of dimensions and employing them to in-
form functions during processing is similar to the
functorch.torchdims module for which we provide
an interface to enable einops-type function declara-
tions.

3.2 Implementation & Access

CaliPy depends on Pytorch for its autograd func-
tionality and extensive library of differentiable func-
tions, distributions and gradient-based optimizers.
Pyro is used for its probabilistic primitives and over-
all inference capabilities with CaliPy’s core classes

4

6th Joint International Symposium on Deformation Monitoring (JISDM) 7.-9. April 2025, Karlsruhe, Germany

depending heavily on it. The functorch pack-
age provides functionality for handling dimensions
while matplotlib and torchviz are needed for visu-
alization. Python’s contextlib, itertools, and copy
modules are used for managing and manipulating
context, size ranges, or to copy and load full mod-
els to enable exchange. CaliPy is offered under
the terms of the prosperity public license that is
free for non-commercial use (and permits a free
trial period for commercial use); a commercial li-
cense is available, too. Contributing to the library
by bringing up issues, fixing bugs, sharing mod-
els, or designing new effects is possible and en-
couraged. The source code for the library is avail-
able on GitHub at the url https://github.com/
atlasoptimization/calipy. The library will be
listed on the Python packaging index PyPI where
it can be installed via pip. Currently, the library
is still in the early stages with simulation and in-
ference mostly functional but a limited amount of
effects and possibilities to share models. Devel-
opment goals for now include better tutorials and
documentation as well as support for subbatching,
which allows handling big datasets by processing
them in small subsets.

4 Usage & Experiments

The following three toy examples have been cho-
sen for their simplicity and showcase the difference
between formulating and solving a model analyti-
cally and doing it with CaliPy. Results for both ap-
proaches coincide up to 1e-5. In all cases, CaliPy
allows us to skip from the model directly to the so-
lution and bypass the manual calculations necessary
to enable LS estimation. Skeleton code highlights
the key details of the model formulation; fully exe-
cutable code with explanations and annotations can
be found in the repository’s example folder. 1

To extend each of the three examples, we could in-
troduce:

• parameters as random and unobserved

• non-Gaussian observations

• nonlinearities in parameters and observations.

Deriving a solution with LS would then induce extra
effort; CaliPy handles the examples still effortlessly.

1
https://github.com/atlasoptimization/calipy/tree/dev_branch/

calipy/examples/engineering_geodesy

4.1 Example 1: Bias Estimation

Suppose for illustration purposes the task of esti-
mating a constant bias θ in tape measurements from
observations y of a rod with known length µ as il-
lustrated below.

Figure 2. Illustration of observations made by a
measurement tape with bias θ .

Since y ≈ µ − θ , a probabilistic model of the
form y∼N (µ−θ ,σ),y∈Rnobs seems appropriate,
thereby declaring the observations to be normally
distributed around expected value µ −θ with stan-
dard deviation σ . We can infer an estimator for θ

under the assumption of i.i.d. observations y in the
following way via maximum likelihood:

θ̂ = argmaxθ p(y) (3)

= argmaxθ

nobs

∏
k=1

1√
2πσ

exp
(
−(yk − (µ −θ))2

2σ2

)
= argminθ

nobs

∑
k=1

(yk − (µ −θ))2

=
1
n

nobs

∑
k=1

(µ − yk)

where the last few lines simply re-establish that
maximizing Gaussian likelihood corresponds to
minimizing a squared penalty which is achieved by
the arithmetic mean. This result is neither hard
to derive nor to guess. Nonetheless, in CaliPy,
we can directly implement the probabilistic model
y ∼ N (µ − θ ,σ), avoid any manual computation
as in eq. 3 and have inference performed automati-
cally via the following code:

...

theta_object = UnknownParameter(theta_ns)

noise_object = NoiseAddition(noise_ns)

...

class BiasProbModel(CalipyProbModel):
...

def model(self, input_vars = None,
observations = None):
theta = theta_object.forward()

5

https://github.com/atlasoptimization/calipy
https://github.com/atlasoptimization/calipy
https://github.com/atlasoptimization/calipy/tree/dev_branch/calipy/examples/engineering_geodesy
https://github.com/atlasoptimization/calipy/tree/dev_branch/calipy/examples/engineering_geodesy

6th Joint International Symposium on Deformation Monitoring (JISDM) 7.-9. April 2025, Karlsruhe, Germany

output = noise_object.forward((mu - theta,

sigma), observations = observations)

return output
...

4.2 Example 2: Two-peg Test

Suppose the task is to perform a two-peg level test
(Uren and Price, 2006, p.40) to estimate the colli-
mation angle α by which a level’s sight axis devi-
ates from the horizontal plane. The leveling rods
are placed at static positions 60m apart and multiple
sets of height measurements are made for different
positions of the level, see the illustration below.

Figure 3. The two-peg test consists in observing
height differences affected by a nonzero collima-
tion angle α .

The relationship between the sketched quantities is
given by:

yA ≈ ỹA +∆A, yB ≈ ỹB +∆B

∆A = lA tanα, ∆B = lB tanα

If we encode nconf different geometric configura-
tions as input variables x ∈ Rnconf×2,xk,· = [lk

A, l
k
B] ∈

R1×2 for the configurations k = 1, ...nconf, we may
formulate the probabilistic model

y(x)∼ N (ỹ+ x tanα,σ) (4)

y(x) =

 y1
A y1

B
...

...
ynconf

A ynconf
B

 ỹ(x) =

 ỹ1
A ỹ1

B
...

...
ỹnconf

A ỹnconf
B

The classic two-peg test uses the two configurations
x1,· = [30m,30m] and x2· = [0m,60m] which allows
the observations y ∈ R2×2 to be converted directly
into an estimation of α by means of the following
reformulations.

yk
A − yk

B ∼ N (∆H +(lA − lB) tanα,σ∆)

with σ∆ =
√

2σ . This implies expected values of
∆H and ∆H −60m tanα for y1

A − y1
B and y2

A − y2
B re-

spectively and determines the estimators ∆̂H, t̂anα

that maximize p(yA − yB) as

argmax∆H,tanα p(y1
A − y1

B)p(y2
A − y2

B).

This can be simplified by resolving the Gaussian
densities similar to what was done in eq. 3 and
yields

argmin∆H,tanα(y
1
A − y1

B −∆H)2 +(y2
A − y2

B

−∆H +60m tanα)2.

Subsequently, ∆̂H = y1
A − y1

B and t̂anα =
(60m)−1[∆H − (y2

A − y2
B)] as this achieves a

value of 0 for the squared penalty. The best guess
for α is then α̂ = atan(t̂anα). Note that the results
of this computation would be non-trivially different
in case we had more configurations, measurements,
or configuration-dependent accuracies. In CaliPy,
we can completely skip the manual computation
and let inferences be computed automatically.

...

alpha_object = UnknownParameter(alpha_ns) # scalar

ytilde_object = UnknownParameter(ytilde_ns) # [n,2]

noise_object = NoiseAddition(noise_ns)

...

class LevelProbModel(CalipyProbModel):
...

def model(self, input_vars, observations = None):
alpha = alpha_object.forward()

ytilde = ytilde_object.forward()

output = noise_object.forward((ytilde +

input_vars* torch.tan(alpha), sigma),

observations = observations)

return output
...

The code above directly implements
eq. 4; inference can be performed via
level_prob_model.train(data) and the
results coincide with the analytical solution..

4.3 Example 3: Axis Errors

Suppose the task is to estimate the collimation error
c and the trunnion axis error i of a total station, two
axis misalignments that impact the horizontal angle
measurement φobs. The relevant geometric configu-
rations are presented in fig. 4.

6

6th Joint International Symposium on Deformation Monitoring (JISDM) 7.-9. April 2025, Karlsruhe, Germany

Figure 4. Typical axis misalignments in total sta-
tions.

The relationship between observed horizontal an-
gles φobs and true horizontal angles φ̃ as well as
elevation angles β is in principle nonlinear but can
be approximated linearly for small error magnitudes
according to (Deumlich, 1980, pp. 132 - 134).

φobs ∼N (µφ ,σ) (5)

µφ ≈φ̃ + face200gon

− γc + face2γc

− γi + face2γi

Here, γc = c/cosβ is the systematic impact of the
collimation error c on φobs, γi = i tanβ is the system-
atic impact of the trunnion axis error i on φobs and
face ∈ {0,1} is a binary variable indicating if mea-
surements have occurred in the Face I (face = 0) or
the Face II (face = 1) configuration. The usual ap-
proach to infer c and i consists in measuring first
a point in the horizontal plane and a point far out
of the horizontal plane in both faces. Since β = 0
implies γi = 0 and γc = c, the first pair of measure-
ments allows inferring and correcting c upon which
the second pair of measurements yields γc = 0 and
γi = i tanβ . With γi = (φ f ace2

obs −φ
f ace1

obs −200gon)/2,
it is possible to solve for i.

Alternatively, we can directly implement the proba-
bilistic model 5 for observed points at arbitrary ele-
vation angles in CaliPy with the following code.
...

class AxisErrorProbModel(CalipyProbModel):
...

def model(self, input_vars, observations = None):
beta = input_vars['beta']
face = input_vars['face']
c = c_object.forward()

i = i_object.forward()

gamma_c = c / torch.cos(beta)

gamma_i = i * torch.tan(beta)

phi_tilde = phi_tilde_object.forward()

mu_phi = phi_tilde + face*(torch.pi/2 +

2*gamma_c + 2* gamma_i) - gamma_c - gamma_i

output = noise_object.forward((mu_phi, sigma),

observations = observations)

return output
...

Upon instantiation, it can be solved in the usual
way by calling the .train() method. Adopting
the original nonlinear relationships is as easy as
swapping gamma_c = c/torch.cos(beta) for
c_quot = torch.sin(c)/torch.cos(beta)

and gamma_c = torch.asin(c_quot).

5 Discussion & Conclusion

We presented how CaliPy, a Python library for cal-
ibration, can be used to build and solve probabilis-
tic instrument models that arise in the analysis of
measurements. It extends the set of models solv-
able by classical Least Squares and allows proba-
bilistic models featuring almost arbitrary differen-
tiable functions and Python control flow by build-
ing on top of Pyro and PyTorch. Stochastic vari-
ational inference guarantees that even complicated
nonlinear problems with immense amounts of data
can be tackled. By ensuring a strict separation of
concerns by splitting probabilistic models into sep-
arate effects that communicate via clearly defined
interfaces, probabilistic models can be built conve-
niently.

Simple examples concerning the calibration of tape
measures, levels, and total stations demonstrated the
advantages of formulating and solving instrument
models in CaliPy. Dimension-aware processing and
automatic inference let the user focus on building
forward models without worrying too much about
the solution procedure. We aim to use the library for
modeling the impact of environmental conditions on
data gathered by Total Stations and TLS where the
complex interplay between instrument and environ-
ment has proven hard to model and the amount of
data complicates inference. Future work includes
an increase in the amount of available effects and
better support for sharing models. With this paper,
the author hopes to provide an introduction to an ex-
tendable library that can be used for rapid prototyp-
ing of real-world-suitable instrument models both in
research and in industry.

7

6th Joint International Symposium on Deformation Monitoring (JISDM) 7.-9. April 2025, Karlsruhe, Germany

Acknowledgements

The author thanks Andreas Wieser, Zhaoyi Wang,
Tomislav Medic and Nicholas Meyer for fruitful
discussions on the topics of instrument models
and calibration. CaliPy was developed at Atlas
Optimization GmbH. The geodetic examples were
worked out as part of the author’s academic work at
ETH Zurich.

References

Bingham, E., Chen, J. P., Jankowiak, M., Ober-
meyer, F., Pradhan, N., Karaletsos, T., Singh,
R., Szerlip, P., Horsfall, P., and Goodman,
N. D. (2018). Pyro: Deep Universal Prob-
abilistic Programming. arXiv e-prints, page
arXiv:1810.09538.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D.
(2017). Variational inference: A review for statis-
ticians. Journal of the American Statistical Asso-
ciation, 112(518):859–877.

Bollen, K. A. (1996). An alternative two stage least
squares (2sls) estimator for latent variable equa-
tions. Psychometrika, 61(1):109–121.

Boyd, S. P. and Vandenberghe, L. (2004). Convex
Optimization. Cambridge University Press, Cam-
bridge.

Del Pia, A., Dey, S. S., and Molinaro, M. (2014).
Mixed-integer Quadratic Programming is in NP.
arXiv e-prints, page arXiv:1407.4798.

Deumlich, F. (1980). Instrumentenkunde der Ver-
messungstechnik. VEB Verlag fuer Bauwesen,
Berlin, 7 edition.

Gelman, A., Vehtari, A., Simpson, D., Margos-
sian, C. C., Carpenter, B., Yao, Y., Kennedy,
L., Gabry, J., Bürkner, P.-C., and Modrák, M.
(2020). Bayesian Workflow. arXiv e-prints, page
arXiv:2011.01808.

Ghilani, C. D. and Wolf, P. R. (2006). Adjustment
Computations - Spatial Data Analysis. John Wi-
ley & Sons, New York.

Hastie, T., Tibshirani, R., and Friedman, J. H.
(2009). The Elements of Statistical Learn-
ing - Data Mining, Inference, and Prediction.
Springer, Berlin, Heidelberg.

Henderson, L., Goodman, N. D., Tenenbaum, J. B.,
and Woodward, J. F. (2010). The structure and
dynamics of scientific theories: A hierarchical
bayesian perspective. Philosophy of Science,
77(2):172–200.

Kerekes, G. and Schwieger, V. (2020). Elementary
error model applied to terrestrial laser scanning
measurements: Study case arch dam kops. Math-
ematics, 8(4).

Kingma, D. P. and Welling, M. (2019). An introduc-
tion to variational autoencoders. Found. Trends
Mach. Learn., 12(4):307–392.

Lichti, D. D. (2010). Terrestrial laser scanner self-
calibration: Correlation sources and their mitiga-
tion. ISPRS Journal of Photogrammetry and Re-
mote Sensing, 65(1):93–102.

Neitzel, F. (2021). Stochastic Models for Geodesy
and Geoinformation Science. MDPI, Basel.

Niemeier, W. (2008). Ausgleichungsrechnung
- Statistische Auswertemethoden. Walter de
Gruyter, Berlin.

Nievergelt, Y. (2000). A tutorial history of
least squares with applications to astronomy and
geodesy. Journal of Computational and Applied
Mathematics, 121(1):37–72.

Paszke, A., Gross, S., Massa, F., Lerer, A., Brad-
bury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Köpf,
A., Yang, E., DeVito, Z., Raison, M., Tejani, A.,
Chilamkurthy, S., Steiner, B., Fang, L., Bai, J.,
and Chintala, S. (2019). PyTorch: an imper-
ative style, high-performance deep learning li-
brary. Curran Associates Inc., Red Hook, NY,
USA.

Phillips, S. D., Estler, W. T., Doiron, T., Eberhardt,
K. R., and Levenson, M. S. (2001). A careful
consideration of the calibration concept. Journal
of Research of the National Institute of Standards
and Technology, 106:10.

Schaffrin, B. (2020). Total least-squares colloca-
tion: An optimal estimation technique for the eiv-
model with prior information. Mathematics, 8(6).

Uren, J. and Price, W. F. (2006). Surveying for En-
gineers. Palgrave Macmillan, Houndmills, Bas-
ingstoke, Hampshire.

8

	Introduction
	Instrument models and CaliPy
	Classic Approach to Instrument Models
	Stochastic Variational Inference
	Specifying Models in CaliPy

	Architecture & Implementation
	Software Architecture
	Implementation & Access

	Usage & Experiments
	Example 1: Bias Estimation
	Example 2: Two-peg Test
	Example 3: Axis Errors

	Discussion & Conclusion

