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Abstract 

With the continuous and increasingly in - depth application of Global Navigation Satellite System 
(GNSS) deformation monitoring technology, it becomes necessary to set up some monitoring points 
in challenging environments. These include areas close to buildings, and under trees. In such 
demanding settings, GNSS satellite signals are severely obstructed. This obstruction gives rise to the 
multipath effect, frequent diffraction, and cycle slips. These factors not only significantly degrade 
the quality of GNSS observation data but also present difficulties and challenges for high - precision 
GNSS deformation monitoring. To assess the usability of GNSS deformation monitoring in these 
environments, this paper first puts forward a data quality assessment method that takes into account 
the spatiotemporal distribution characteristics of data quality indicators. Subsequently, a 
comprehensive evaluation model for GNSS data quality, based on the modified VlseKriterijumska 
Optimizacija I Kompromisno Resenje (VIKOR), is established. This model serves as a basis for 
evaluating the applicability of GNSS technology. Moreover, an outlier processing method based on 
random sample consensus and partial ambiguity resolution is introduced to conduct a comparative 
analysis of the accuracy of different strategies. Finally, the results of monitoring projects for a tree-
obstructed landslide demonstrate that when the environmental complexity is below 46%, an accuracy 
of less than 2.5 cm can be achieved. At complexity levels below 70%, the accuracy remains better 
than 4.0 cm. These results confirm the feasibility and effectiveness of the comprehensive evaluation 
model. 
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1 Introduction 

The Global Navigation Satellite System (GNSS) 

has become indispensable for deformation 

monitoring due to its high precision, continuous all-

weather operation, and automation. It is widely used 

in landslide displacement monitoring, ground 

subsidence detection, structural health monitoring 

of large infrastructure (e.g., cross-sea bridges), and 

mining surface deformation monitoring(Yu et al., 

2020; Hou et al., 2024; Gao et al., 2025), 

demonstrating significant social and economic 

benefits in disaster prevention and engineering 

safety. 

Despite its advantages, GNSS performance is 

constrained by error sources such as multipath 

errors and diffraction errors, leading to traditional 

monitoring stations being deployed primarily in 

open areas. Recent studies have focused on 

improving GNSS applications in challenging 

environments (e.g., urban canyons and vegetated 

landslide areas). For instance, multipath mitigation 

methods include sidereal filtering, hemispherical 

models, and stochastic modeling (Zhang et al., 2022; 

Zhang et al., 2023a). Diffraction error suppression 

techniques involve 3D environmental modeling and 

adaptive elevation masking (Xi et al., 2023). Data 

quality control strategies, such as robust estimation 

models and multi-system ambiguity 

resolution(Zhang et al., 2023b; Bai et al., 2024; Wen 

et al., 2024), enhance monitoring accuracy in 

challenging conditions. These studies have strongly 

promoted the wide application of GNSS for 

deformation monitoring in challenging 

environments. 

However, in densely vegetated landslide areas, 

dynamic canopy obstruction and diffraction effects 

cause frequent signal loss and increased noise, 

severely degrading GNSS data quality (Kurum et al., 

2022; Ghosh et al., 2024). It is noteworthy that with 
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the implementation of enhanced signal structures in 

next-generation GNSS constellations (e.g., BDS-3 

and Galileo E6) and advancements in multi-

frequency multi-system fusion positioning 

technologies, at the same time, satellite signals can 

partially penetrate forest canopy gaps, achieving 

sub-centimeter-level monitoring accuracy in 

partially obstructed environments has become 

feasible. 

To evaluate the feasibility of GNSS landslide 

monitoring under canopy occlusion, this study 

conducts multi-scale obstruction experiments on a 

vegetated landslide. A multi-dimensional GNSS 

data quality evaluation system is established, 

integrating environmental openness and effective 

data distribution indicators. Data processing 

strategies, including carrier-to-noise ratio stochastic 

modeling, robust estimation, and partial ambiguity 

resolution, are applied to analyze monitoring 

performance in challenging environments. 

2 Data Quality Evaluation 

Observation environments directly affect GNSS 

data quality, which in turn GNSS data quality can 

reflect environmental complexity. Thus, analyzing 

GNSS data quality can evaluate monitoring 

conditions and guide processing strategies. 

2.1 Data Quality Indicators 

 Common GNSS data quality indicators include: 

 Data Integrity Rate (I): Ratio of observed 

datas to theoretically possible datas. 

 Cycle Slip Ratio (R): Ratio of datas with 

cycle slips to total datas. 

 Pseudorange Multipath (MP): Error caused by 

non-direct signals. 

 Positioning Dilution of Precision (PDOP): 

Satellite geometry strength. 

To address the limitations of these conventional 

metrics, this study introduces two novel indicators: 

Sky View Factor (SVF) and Data Distribution (D). 

To more accurately reflect the spatial distribution of 

observations, this study introduces SVF. This 

indicator characterizes the openness of the 

monitoring environment by calculating the ratio of 

the actual sky sphere where satellites operate, which 

is not blocked by such terrain, buildings, tree 

canopies, when looking up from the receiver 

antenna to the theoretical sky sphere where satellites 

operate. In the landslide monitoring environment, 

the blocking situations are mainly divided into two 

categories: 1). Total blocked: For example, 

obstacles such as slope bodies and support 

structures completely block the signal, resulting in 

the satellite signal being unable to reach the receiver 

antenna at all. 2). Partial blocked: Such as the signal 

blocking by vegetation like forest canopies. The 

GNSS signal can partially penetrate the pores of the 

forest canopy, thus only causing a certain degree of 

attenuation of the signal strength. Therefore, two 

types of influencing factors can be considered in the 

calculation of the observation environment 

openness, and the specific calculation method of 

SVF is as follows: 

SVF = 1 − 𝑅(𝑓𝑜𝑟𝑒𝑠𝑡) ∗ 𝑘𝑓 − 𝑅(𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒) ∗ 𝑘𝑙 (1) 

where 𝑅(𝑓𝑜𝑟𝑒𝑠𝑡)  and  𝑅(𝑙𝑎𝑛𝑑𝑠𝑙𝑖𝑑𝑒)  represent 

vegetation and terrain obstruction ratios, 

respectively. 𝑘𝑓 is set between 0 and 1 depending on 

the tree type and canopy pore size and typically 

takes values in the range of 0.3-0.8 in landslide 

monitoring environments, at the same time 𝑘𝑙 is set 

to 1. 

From the definition of data completeness rate, it is 

understood that this indicator constitutes a statistical 

measure over the entire observation period. While it 

reflects the overall proportion of data loss, it fails to 

capture the temporal distribution characteristics of 

valid observational data. As illustrated in Figure 1, 

although all four satellites achieved 80% data 

completeness rates, their data distribution patterns 

exhibit significant disparities: Satellites 2 and 3 

maintained continuous valid data segments, 

Satellite 1 displayed intermittent valid data 

throughout the period, and Satellite 4 showed 

fragmented data in the first half followed by 

continuous coverage in the latter half. So, although 

the data completeness rate can reflect the 

completeness of the data for the entire time, it is 

difficult to directly reflect the specific distribution 

of the data on the timeline. 

To more accurately characterize the temporal 

distribution characteristics of valid data, we propose 

a novel evaluation indicator: Data Distribution (D). 

This indicator is designed to address the limitations 

of data integrity rate in capturing temporal 

distribution information. Its construction 

methodology is as follows: 
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𝐷 =
√𝑛𝑀
𝐻

𝑆𝑇𝐷

𝐼𝑛𝑣
, 𝑛𝑀 > 1 (2) 

where 𝑛𝑀 is the number of valid data epochs, 𝐻 is 

the observed epochs, 𝑆𝑇𝐷 is the standard deviation 

of missing epochs, and 𝐼𝑛𝑣 is the sampling interval. 

 

Figure 1. Schematic distribution of data from 

different satellites 

2.2 Comprehensive Evaluation Method 

Based on the integrity rate of actual observed data, 

a comprehensive quantitative evaluation of 

observation data quality is achieved by combining 

metrics such as cycle slip ratio and pseudomultipath. 

This reflects the complexity level of the monitoring 

environment.  

GNSS 

observations

R MP PDOP SVF D

Indicator 

normalization

positive and 

negative ideal 

solutions

Group utility value, 

individual regret 

value

Compromise 

solution

 

Artificial designation 

Simulation calculationI

Comprehensive 

result

Environmental 

complexity  

Figure 2. Comprehensive evaluation model of the 

complexity of the environment 

In order to obtain quantitative evaluation results 

from multiple evaluation indicators, this study 

proposes a method for comprehensive quantitative 

assessment of monitoring station data based on the 

modified VIKOR (VIsekriterijum-ska optimizacija 

i KOm-promisno Resenje) multi-criteria 

compromise ranking model (Opricovic and Tzeng, 

2004). VIKOR is a multi-attribute decision-making 

method based on ideal solutions, which evaluates 

alternatives by identifying the ‘positive ideal 

solution’ and ‘negative ideal solution’, then 

calculating compromise solutions for each 

candidate. The flowchart of the comprehensive 

evaluation model for observation environment 

complexity constructed using the VIKOR 

framework is shown in Figure 2. In this case, the 

gray-filled links are the modified parts. 

The specific steps of the comprehensive data quality 

evaluation method are as follows: 

1) Indicator normalization. Considering the 

differences in dimensions and numerical scales 

among evaluation indicators, standardized 

quantification rules are established for each 

indicator. Accounting for the data quality 

characteristics in challenging monitoring 

environments, threshold settings for different 

evaluation indicators are adjusted, and 

quantitative rules for each indicator are 

formulated： 

𝑆(𝑅) =

{
 

 
0 (𝑅 ≥ 200)

(200 − 𝑅)

(200 − 50)
(50 < 𝑅 < 200)

1 (𝑅 ≤ 50)

𝑆(𝑀𝑃) =

{
 

 
0 (𝑀𝑃 ≤ 50)

(𝑀𝑃 − 50)

(100 − 50)
(50 < 𝑀𝑃 < 100)

1 (100 ≤ 𝑀𝑃)

𝑆(𝑃𝐷𝑂𝑃) =

{
 

 
0 (𝑃𝐷𝑂𝑃 ≤ 1)

(𝑃𝐷𝑂𝑃 − 1)

(4 − 1)
(1 < 𝑃𝐷𝑂𝑃 < 4)

1 (4 ≤ 𝑃𝐷𝑂𝑃 < 10)

𝑆(𝑆𝑉𝐹) =

{
 

 
0 (𝑆𝑉𝐹 ≥ 0.3)

(0.8 − 𝑆𝑉𝐹)

(0.8 − 0.3)
(0.3 < 𝑆𝑉𝐹 < 0.8)

1 (0.8 ≤ 𝑆𝑉𝐹)

𝑆(𝐷) =

{
 

 
0 (𝐷 ≤ 0.2)

(𝐷 − 0.2)

(0.8 − 0.2)
(0.2 < 𝐷 < 0.8)

1 (0.8 ≤ 𝐷)

 (3) 

In the formula: 𝑆(𝑅), 𝑆(MP), 𝑆(PDOP), 𝑆(𝑂) and 

𝑆(𝐷) represent the scoring quantification rules for 

cycle slip ratio, pseudorange multipath, PDOP, SVF, 

and effective data distribution, 

respectively.  Through these quantification rules, 

individual indicator evaluation results for 

monitoring environment complexity are obtained. A 

smaller evaluation value indicates a more ideal 

monitoring environment. 
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2) Determination of positive and negative ideal 

solutions. The standard VIKOR method 

determines positive and negative ideal solutions 

by searching all samples to enable relative 

evaluation of multiple schemes. To achieve 

quantitative evaluation of monitoring 

environment complexity, this study adopts 

fixed positive and negative ideal solutions for 

quantitative assessment: 

𝑆𝑖 = ∑𝜔∗ × (
𝑆(∗)+ − 𝑆(∗)𝑖
𝑆(∗)+ − 𝑆(∗)−

) 

𝑅𝑖 = 𝑚𝑎𝑥 [𝜔∗ × (
𝑆(∗)+ − 𝑆(∗)𝑖
𝑆(∗)+ − 𝑆(∗)−

)] 

(4) 

In the formula: 𝑆(∗)+ represents the positive ideal 

solution for the corresponding indicator, and  𝑆(∗)− 

represents the negative ideal solution for the 

corresponding indicator. 

To determine the weights of different indicators, 

this study employs simulations to quantify the 

impact magnitudes 𝑣∗ of various indicator types. 

𝜔∗ =
|𝑣∗|

∑|𝑣|
  (5) 

3) Calculate the group utility value 𝑺𝒊  and 

individual regret value 𝑹𝒊: 

𝑆𝑖 = ∑𝜔∗ × (
𝑆(∗)+ − 𝑆(∗)𝑖
𝑆(∗)+ − 𝑆(∗)−

)

𝑅𝑖 = 𝑚𝑎𝑥 [𝜔∗ × (
𝑆(∗)+ − 𝑆(∗)𝑖
𝑆(∗)+ − 𝑆(∗)−

)]

 (6) 

In the formula: 𝜔∗ represents the prior weight of the 

corresponding evaluation indicator, and 𝑆(∗)𝑖 
denotes the evaluation result of the corresponding 

indicator for the 𝑖-th sample. 

4) Calculate the compromise solution 𝑸𝒊: 

𝑄𝑖 = 𝑣
𝑆𝑖 − 𝑆imin
𝑆imax − 𝑆imin

+ (1 − 𝑣)
𝑅𝑖 − 𝑅imin
𝑅imax − 𝑅imin

 (7) 

In the formula: 𝑣  represents the decision 

mechanism coefficient, and  𝑣 ∈ [0,1] . In the 

standard VIKOR algorithm, 𝑆imax 、𝑆imin、𝑅imax 

and 𝑅imin   denote the maximum and minimum 

group utility values, and the maximum and 

minimum individual regret values of the sample set, 

respectively. To obtain quantitative evaluation 

results, these values are fixed here as 1, 0, 1, and 0 

accordingly.  

By utilizing a compromise solution to evaluate the 

quality of observed data and combining it with the 

data integrity rate, the comprehensive result(CR) of 

the corresponding system is determined: 

CR𝑖 = 1 − (1 − 𝑄𝑖) ∗ 𝐼 (8) 

The final evaluation result of environmental 

complexity(EC) is obtained by analyzing the data 

quality of different systems: 

EC =∑CR𝑖 ∗ 𝑁𝑠𝑦𝑠𝑖 ∑𝑁𝑠𝑦𝑠𝑖⁄  (9) 

Where 𝑁𝑠𝑦𝑠𝑖  refers to the number of satellite 

systems corresponding to the results. 

3 Data Processing Strategies 

The monitoring data was processed using the team-

developed GNSS data management system 

(GNSSDMS). Due to impacts such as tree canopy 

occlusion, the GNSS data quality in such scenarios 

suffers from significant outliers and challenges in 

ambiguity resolution. To address these issues, 

robust estimation and Partial Ambiguity Resolution 

(PAR) strategies were integrated into the standard 

data processing workflow. Below are detailed 

descriptions of the stochastic model, robust 

estimation strategies, and PAR implementation 

methodologies.  

3.1 Stochastic Model 

Due to differences in the propagation paths of 

GNSS satellite signals, the interference from 

environments varies, leading to significant 

distinctions in the quality of observational data 

among different satellites. To effectively 

characterize these variations in observation 

accuracy, stochastic models are typically employed 

in GNSS data processing to weigh the observations. 

Commonly used stochastic models include the 

elevation model, carrier-to-noise ratio (C/N0C/N0)-

based model, and posterior variance estimation 

model. Previous studies have demonstrated that the 

C/N₀-based stochastic model better reflects 

observation data quality in challenging 

environments (Eueler and Goad, 1991). This is 

because the carrier-to-noise ratio directly quantifies 

the relationship between received signal strength 
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and noise levels, enabling sensitive detection of 

signal quality degradation caused by multipath 

effects, ionospheric disturbances, and signal 

occlusion. So, a carrier-to-noise ratio (C/N0C/N0)-

based stochastic model is adopted: 

𝜎2 = 𝐶𝑖 × 10
−
𝐶/𝑁0
10  

(10) 

where  𝐶𝐿1 = 0.002 24 m2𝐻𝑧  and 𝐶𝐿2 =

0.000 77 m2𝐻𝑧. 

3.2 Robust Estimation 

In challenging environments, GNSS signals are 

susceptible to interference from surrounding 

conditions, which significantly increases the 

probability of multiple outliers in GNSS data. To 

effectively identify and mitigate these outliers, this 

study employs the RANSAC algorithm (Wen et al., 

2024) to process outliers, thereby reducing their 

impact. The methodology is detailed as follows: 

1) Sampling: Randomly select a subset of size t. 

To maximize the probability of obtaining a 

subset free of outliers, the sample size is 

typically set to the minimum required for 

estimating the parameters. 

2) Computation: Calculate the parameters using 

the selected subset. 

3) Back-substitution Test: Substitute the 

parameters into all samples to evaluate their 

consistency with the estimated values. 

4) Evaluation and Update: Classify samples 

with residuals below a predefined threshold as 

inliers (added to the inlier set) and those 

exceeding the threshold as outliers (assigned 

to the outlier set). If the current inlier set 

surpasses the previous optimal, update the 

optimal subset.  

5) Iteration: Repeat steps 1)– 4) until the 

iteration count meets the minimum 

requirement, then output the final results.  

3.3 Partial Ambiguity Resolution 

In high-precision GNSS data processing, ambiguity 

resolution in challenging environments has long 

been a critical technical challenge requiring urgent 

solutions. To address difficulties in ambiguity 

resolution under tree canopy occlusion, signal 

interruptions, and frequent cycle slips, this study 

adopts a PAR strategy to enhance the success rate 

and reliability of ambiguity resolution. Current 

mainstream PAR strategies typically select satellite 

subsets based on ambiguity resolution success rates, 

elevation angles, signal-to-noise ratios, and satellite 

variances (Jiang et al., 2022b). Considering the 

frequent signal loss and cycle slips in obstructed 

environments, this paper proposes a satellite subset 

selection strategy that accounts for tracking epochs 

and ambiguity variance. The core steps are as 

follows: 

1) Initial Ambiguity Resolution: First, attempt 

to fix ambiguities for all available satellites. If 

successful, output the results directly. 

2) Eliminate Satellites with Few Tracking 

Epochs: If the initial attempt fails, prioritize 

removing satellites with insufficient tracking 

epochs due to their higher ambiguity 

uncertainty.  

3) Remove Satellites with High Ambiguity 

Variance: If ambiguity resolution remains 

unsuccessful, further eliminate satellites 

exhibiting large ambiguity variances to reduce 

noise in the ambiguity set.  

4) Termination Criteria: Stop when 

ambiguities are resolved, or insufficient 

satellites remain.  

4 Case Study 

4.1 Landslide Monitoring 

4.1.1 Monitoring Environment and Data 

Quality 

To thoroughly analyze GNSS landslide monitoring 

performance in tree-obstructed environments, this 

study collected GNSS observation data from three 

monitoring points with varying obstruction levels 

on a typical landslide body in Shenzhen, China. 

Data acquisition at 2024-02-06. The project utilized 

the BYT1-8D multi-frequency multi-constellation 

receiver, configured with a 30-second sampling 

interval, to capture data from BDS, GPS, and 

Galileo systems. 

Figure 4 illustrates the site scenarios, carrier-to-

noise ratio (C/N0) spatial distributions, and 

obstruction maps of the three monitoring points. 

Based on field tree occlusion conditions, the sky 

visibility ratio 𝑘𝑓—calculated from hemispherical 

fisheye imagery as the pixel proportion of 

unobstructed sky areas—was determined to be 0.43. 

Table 1 summarizes the obstruction characteristics 
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of the monitoring points. Where DB01: Primarily 

affected by terrain occlusion, exhibiting the highest 

SVF. DB02: Signals suffer from canopy-induced 

occlusion and diffraction, leading to intermittent 

data gaps and reduced C/N0. DB03: Severe tree 

occlusion results in the lowest SVF. Even satellites 

at 80° elevation angles experience significant signal 

interference and trajectory interruptions, causing 

marked C/N0 degradation.  

Table 2 presents a comparative analysis of data 

quality across three monitoring points under 

different satellite system configurations, where G, 

C, E, GC, and GCE correspond to GPS-only, BDS-

only, Galileo-only, GPS+BDS dual-system, and 

GPS+BDS+Galileo triple-system configurations, 

respectively. The table reveals that single systems 

(GPS or Galileo alone) observe fewer satellites, 

exhibit poorer satellite geometry, and yield higher 

PDOP. In contrast, combining GPS+BDS or 

GPS+BDS+Galileo significantly increases the 

number of observable satellites and improves 

PDOP. 

  
(a) DB01 environment (b) DB01 sky plot 

  
(c) DB02 environment (d) DB02 sky plot 

  
(e) DB03 environment (f) DB03 sky plot 

Figure 3. Environmental graph of the three sites 

Table 1. Obstruction Statistics 

Site Slope mask (%) Tree mask (%) SVF (%) 

DB01 23.05 7.58 73.69 

DB02 9.04 47.16 70.68 

DB03 11.60 56.54 64.09 

Table 2. Statistics on data quality information 

Site  G C E GC GCE 

DB01 

I (%) 79.5 77.9 80.3 78.4 79.0 

R 194.2 267.5 248.8 243.1 244.7 

MP (cm) 62.6 48.6 65.0 54.1 55.7 
PDOP 2.8 1.8 12.0 1.3 1.3 

D 0.3 0.1 0.3 0.2 0.2 

DB02 

I (%) 84.0 80.4 79.9 81.7 81.3 

R 87.4 115.0 110.4 105.5 107.8 

MP (cm) 64.4 61.2 63.7 62.7 62.9 

PDOP 2.5 1.6 7.7 1.2 1.2 

D 0.5 0.3 0.6 0.4 0.4 

DB03 

I (%) 83.4 84.4 79.2 84.1 83.0 
R 59.3 95.2 91.1 83.3 84.9 

MP (cm) 67.1 63.6 63.7 61.4 62.0 

PDOP 2.8 1.7 13.1 1.3 1.3 

D 0.8 0.4 0.6 0.5 0.5 

Notably, although the DB01 monitoring point has 

the lowest data integrity rate due to terrain-induced 

obstructions, its effective observational data quality 

surpasses other points owing to weaker vegetation 

occlusion effects. This phenomenon highlights the 

distinct impacts of vegetation coverage and terrain 

obstruction on GNSS signal quality in complex 

topographic environments. 

Using the comprehensive evaluation model from 

Section 2.2, the data quality of different satellite 

systems and their combinations at the three sites 

were evaluated. The weights for each indicator were 

assigned based on simulation results as follows: 

𝑆(𝑅): 𝑆(𝑀𝑃): 𝑆(𝑃𝐷𝑂𝑃): 𝑆(SVF): 𝑆(𝐷) =
0.26: 0.10: 0.42: 0.10: 0.12 , the decision 

mechanism coefficient was set to: 𝑣 = 0.5. Detailed 

results are shown in Table 3. The analysis indicates 

that DB01 exhibits superior overall data quality, 

while DB03 demonstrates relatively poorer data 

quality. Single-system configurations (e.g., GPS) 

show degraded data quality due to limited satellite 

counts and poor PDOP values. Multi-system 

combinations (e.g., GPS+BDS+Galileo) 

significantly improve data quality. Regarding 

environmental complexity, DB01 has the lowest 

complexity, whereas DB03 operates in the most 

complex environment. 

Table 3. Comprehensive results and environmental 

complexity 

Site 
Comprehensive results(%) 

EC(%) 
G C E GC GCE 

DB01 57.4 37.4 78.7 28.2 27.7 45.9 

DB02 66.0 55.4 90.1 56.8 56.0 65.0 

DB03 70.8 60.9 92.6 59.6 60.0 68.8 
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In landslide monitoring scenarios with dual 

vegetation and terrain obstructions, GNSS data 

quality deteriorates significantly, manifesting as 

decreased data integrity rate, increased cycle slips, 

and degraded satellite geometry. With multi-system 

combinations (e.g., GPS+BDS+Galileo) can 

substantially improve satellite visibility and 

geometric configuration, thereby offerring the 

possibility of high-precision landslide monitoring. 

4.1.2 Monitoring Performance 

For monitoring sites under three different occlusion 

conditions, this study utilizes observation data 

acquired on February 6, 2024, to perform real-time 

kinematic (RTK) solutions and statistically 

evaluates their positioning accuracy. The distances 

from DB01, DB02, and DB03 to the reference 

station are approximately 178 m, 282 m, and 321 m, 

respectively. Figures 5–7 display the displacement 

time series under different solution strategies, and 

Table 4 details the ambiguity fixing rates and root 

mean square error (RMSE) of the displacement 

sequences for these strategies. Here, “-R” denotes 

the integration of a robust strategy into the standard 

Kalman filter (KF), while “-RP” indicates the 

further incorporation of a partial ambiguity fixing 

strategy based on the robust Kalman filter. 

 
(a) E 

 
(b) N 

 
(c) U 

Figure 4. DB01 dynamic monitoring of coordinate 

sequences 

 

 
(a) E 

 
(b) N 

 
(c) U 

Figure 5. DB02 dynamic monitoring of coordinate 

sequences 

The dynamic results indicate that at the DB01 

monitoring point with the lowest environmental 

complexity, the positioning accuracy of different 

GNSS system combinations is better than 2.5 cm. 

While multi-system combinations can improve 

accuracy, they also increase the difficulty of 

ambiguity resolution, potentially reducing the 

ambiguity fixing rate. At the more complex 

monitoring points DB02 and DB03, where leaf 

movement is frequent and the number of satellites 

in a single system is limited, the positioning 

accuracy deteriorates. Although multi-system data 

integration enhances available observations, it also 

raises the probability of gross errors and 

complicates ambiguity resolution. When sufficient 

observational data is available, employing a robust 

algorithm can improve accuracy to some extent. 

Further application of a partial ambiguity fixing 

algorithm can boost the ambiguity fixing rate and 

correspondingly enhance precision, ultimately 

achieving monitoring accuracy within 4 cm. 

Table 4. Dynamic monitoring accuracy statistics 

Site Strategy 

G GC GCE 

RMSE 

(cm) 

Fixing  

rate (%) 

RMSE 

(cm) 

Fixing 

rate (%) 

RMSE 

(cm) 

Fixing 

rate (%) 

DB01 

KF 2.2 80.9 1.6 72.8 1.6 53.8 

KF-R 2.2 92.4 1.4 95.3 1.4 96.5 

KF-RP 2.1 96.7 1.1 98.8 1.0 99.2 

DB02 

KF 5.5 17.4 5.9 8.9 5.4 7.5 

KF-R 6.5 30.9 4.3 33.2 4.0 40.7 

KF-RP 6.2 33.1 3.8 53.1 3.4 62.5 

DB03 KF 20.2 10.9 11.9 9.8 7.3 3.0 

 
KF-R 30.1 19.1 6.5 43.6 4.1 45.8 

KF-RP 28.5 23.4 4.0 48.1 3.8 56.2 
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Figure 6. DB03 dynamic monitoring of coordinate 

sequences 

5 Conclusions 

This paper conducts an in-depth analysis of 

landslide monitoring performance at three sites 

under varying tree occlusion conditions. Through 

comparative assessments of observation data 

quality and dynamic performance, the following 

conclusions are drawn: 

1) The distribution of valid data and 

environmental openness can partially reflect 

monitoring data quality. A modified VIKOR-

based multi-criteria quantitative evaluation 

model effectively assesses environmental 

complexity. 

2) In challenging environments, GNSS 

monitoring accuracy decreases. However, 

strategies such as multi-system integration, 

robust estimation, and partial ambiguity fixing 

enhance precision and usability. When 

environmental complexity is below 46%, sub-

2.5 cm is achievable. At complexity levels 

below 70%, accuracy remains better than 4.0 

cm.  

Landslide monitoring in heavily obstructed 

environments faces challenges like signal 

obstruction, increased gross errors, and ambiguity 

resolution difficulties. The application of artificial 

intelligence and machine learning technologies to 

GNSS data processing is expected to enable more 

precise identification and handling of outliers, 

optimize ambiguity resolution algorithms, and 

enhance the adaptability and accuracy of models. 

Additionally, the integrated development of GNSS 

with other technologies—such as combining GNSS 

with Inertial Navigation Systems (INS) can acquire 

richer environmental information, providing 

support for GNSS signal processing and precision 

improvement. These measures can further explore 

their application potential in complex environments 

and unlock possibilities for enhancing monitoring 

performance. 
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