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Abstract

Terrestrial Radar Interferometry (TRI) and Robotic Total Station (RTS) are nowadays two well-established
monitoring techniques used in numerous fields of application, including open-pit mining, civil engineering,
natural hazard prevention. These two technologies have rather complementary characteristics, in fact RTS
provides a measurement of the 3D displacement on specific points while TRI provides a dense 1D map of
the Line of Sight (LoS) displacement component. More and more frequently, TRI and RTS are often used
simultaneously within the same monitoring campaign, to improve the redundancy of the overall monitoring
system. Furthermore, their complementarity makes them excellent candidates to be combined to improve the
information gathered from monitoring data. This work aims to present a data fusion approach that allows
the estimation of a dense deformation vector field starting from RTS and TRI measurements. The proposed
methodology has been applied on a slope monitoring dataset, in order to verify its validity and evaluate possi-
ble limitations.
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1 Introduction

Slope deformation monitoring is a critical activity,
which has become even more important over the
years due to climate change and the ever-increasing
number of man-made slopes, such as those present
in open-pit mines (Sharon, 2020). Currently, among
the numerous methods available to carry out this
type of monitoring, probably the two most success-
ful are Robotic Total Stations (RTS) and Terrestrial
Radar Interferometry (TRI).
RTS are optical surveying instruments that can mea-
sure distance and horizontal/vertical angles of spe-
cific targets (prisms), from which the correspond-
ing three-dimensional Cartesian coordinates can be
obtained by triangulations. RTS integrates auto-
matic positioning and automatic target recognition,
enabling faster and more accurate measurements
with no need for human supervision. These features
make RTS particularly suitable for continuous mon-
itoring (Afeni and Cawood, 2013), where accurate
knowledge of three-dimensional deformation is re-
quired.

TRI is a class of remote sensing techniques based on
coherent radar systems (Caduff et al., 2015), whose
operating principle is to transmit signals in the mi-
crowave frequency band and collect the backscat-
tered echoes coming from the objects present inside
the radar Field of View (FoV). Through radar imag-
ing techniques, TRI systems are able to reconstruct
a complex-valued image of the scenario, where for
each pixel the amplitude and the phase of the mi-
crowave signal are measured. Exploiting interfero-
metric techniques, from phase variations it is possi-
ble to extract the Line of Sight (LoS) displacement
of targets contained within the radar pixel, with sub-
millimeter precision. The final product of the TRI
measurement is a streaming of LoS displacement
maps that is automatically updated at every new ac-
quisition. Thanks to its unique features, TRI has
become the state of the art for open-pit mine slope
monitoring (Bar et al., 2022). The use of this tech-
nology is not limited to the mining sector (Pieraccini
and Miccinesi, 2019), but finds numerous applica-
tions in the monitoring of natural geohazards, such
as landslides, glaciers, and volcanoes, as well as in
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the monitoring of complex structures such as build-
ings, bridges, and dams (Rebmeister, 2024).
In a nutshell, RTS provides the three-dimensional
displacement at specific measurement points, while
TRI provides the one-dimensional LoS displace-
ment over a distributed map of the scenario. Given
the complementary nature of their deformation mea-
surements, RTS and TRI are increasingly used in
combination to improve the redundancy of the over-
all monitoring system (Rodriguez et al., 2024). Fur-
thermore, their complementarity makes them excel-
lent candidates to be combined to improve the infor-
mation gathered from monitoring data. This work
aims to present a data fusion approach that allows
the estimation of a dense deformation vector field
starting from RTS and TRI measurements. Section
2 provides a background on the data acquired by
the RTS and TRI systems and outlines the problem
that is intended to be addressed. Section 3 describes
the proposed method for estimating the deformation
vector field starting from monitoring data. Finally,
in section 4 the proposed method is applied on a
real case study. Before presenting the developed
method, it is worthwhile to remember that over the
years various approaches have been proposed to ob-
tain a continuous deformation vector field from the
combination of different terrestrial monitoring sys-
tems. Among the methods that are based on TRI,
it is possible to mention the integration with optical
Digital Image Correlation (DIC) (Elmouttie et al.,
2021) (Dematteis et al., 2018) as well as the integra-
tion with Terrestrial Laser Scanner (TLS) (Tapete
et al., 2013). While among those based on the use
of RTS, there are methods that exploit pure interpo-
lation (Manconi et al., 2013) or integration with DIC
(Dematteis et al., 2022). Compared to these works,
the present choice of combining TRI and RTS is jus-
tified not only by the strong systems complementar-
ity, but also by their widespread diffusion in min-
ing applications. An effective data fusion method
would therefore be immediately applicable to most
existing slope monitoring campaigns.

2 Background

The object of slope monitoring is the surface de-
formation of natural or man-made slopes, whose
understanding of 3D behavior is essential to deter-
mine its stability condition and therefore the as-
sociated risk factors (McQuillan and Bar, 2023).

The surfaces of monitored slopes can be repre-
sented by a set of 3D points (point cloud) or
a set of polygonal faces (polygon mesh). The
generic surface representation will be denoted by
S . Given two collected epochs, the most com-
plete information on surface deformation is given
by the three-dimensional deformation vector field
u(x) x ∈ S u ∈ R3.
Generally, only a partial measurement of this vector
field can be made with a single monitoring method.

2.1 RTS Data

RTS monitoring provides the measurement of 3D
position at some predefined points xn, n = 1, . . . ,N,
where prisms have been installed. Comparing two
epochs, it is possible to extract the 3D deformation
vector un for each measurement point (figure 1).
If the RTS measures are not affected by bias, their
expectation values are equal to the deformation vec-
tor evaluated at those points:

E[un] = u(xn) (1)

Figure 1. RTS measurement, three prisms located
in x1, x2 and x3, are measured by a RTS obtaining
three corresponding displacement vectors u1, u2
and u3

In a well-performed monitoring campaign, together
with the displacement measurements, the corre-
sponding covariance matrices Σnm should also be
available:

Σnm = E[unuT
m]−E[un]E[uT

m] (2)

Where n,m = 1, . . . ,N are the prisms indices. For
sake of simplicity, in the following the availabil-
ity of these matrices will not be required, and ho-
moscedasticity will be assumed. Nevertheless, the
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introduction of RTS measurements covariance in-
side the equations, would allow a greater robustness
and accuracy of the results.

2.2 TRI Data

TRI systems exploit radar imaging techniques to ac-
quire complex-valued images of the monitored sce-
nario. Applying interferometric methods to those
images, it is possible to measure the deformation
vector component along radar LoS direction e(x)
for each image’s pixel (Monserrat et al., 2014). LoS
deformation measure is usually denoted with ∆r(x)
being the range variation between the radar sensor
and the measured point (figure 2).

Figure 2. TRI measurement, the range variation
is the projection of deformation vector along the
radar LoS

To obtain the final TRI measurement, a complicated
data processing is necessary to remove the atmo-
spheric contributions to the interferometric phase
(Michelini et al., 2014). Given the complexity of
this procedure, it is not always justified to assume
that TRI measurements are free from bias, as they
may contain some atmospheric residuals, not per-
fectly compensated by the processing. In this work,
we will therefore assume that the TRI measure-
ments are affected by a bias b(x):

E[∆r(x)] = u(x) · e(x)+b(x). (3)

It is however legitimate to assume that this atmo-
spheric bias is a spatially smooth function, expand-
able into a limited number of analytic functions,
which are better suited to model the spatial distri-
bution of the atmosphere:

b(x) =
K

∑
k=1

bk fk(x). (4)

Without additional data other than radar ones, it is
in general not possible to deduce any information
about the unknown coefficients bk. However, by
having external data sources, such as RTS measure-
ments, it is possible to estimate the coefficients bk
and thus remove the bias from the radar measure-
ments.
Also for radar data, in principle, the measurements
covariance σ2(x,y) could be available, but again it
will not be required in the proposed method.

2.3 Problem formulation

Having defined the information provided by RTS
and TRI, it is now possible to outline the goal of
the data fusion method presented in this paper.
The problem that is intended to be addressed can
be described as follows: given N 3D deformation
measurement un localized in xn and a dense 1D
measurement ∆r(x) of the deformation component
along LoS directions e(x), what is the best estima-
tion û(x) of the underlying deformation vector field
u(x)? Since this is fundamentally an interpolation
problem (Chiles and Delfiner, 2012), there is not
an unique answer, but the specific solution depends
strongly on the characteristics of the underlying
phenomenon that is trying to be modelled. In this
case the object of interpolation is the slope surface
deformation, and with this in mind, it is possible to
discuss some simple hypotheses on it.

Figure 3. Example of RTS and TRI slope deforma-
tion measurement

To better present the assumptions that are made
about the generic deformation vector field of a
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slope, let’s consider the specific example of RTS
and TRI measurement represented in figure 3. In
this case, eight RTS measurement points are placed
inside a TRI LoS deformation map.
If one seeks what can be the most accurate estimate
of the deformation vector at the point x, denoted as
the interpolation point, it is clear that for the calcu-
lation it should be considered only prisms 1, 2 and
3, since they belong to the same movement process.
While, despite being spatially close to x, prisms
4, 5 and 6 should not be taken into account, since
they belong to a motionless zone, and therefore the
vector measured by them will likely be dominated
by noise. On the other hand, prisms 7 and 8,
even if they show a LoS displacement comparable
to the point considered, must not be used in the
estimation of the deformation vector, since they
belong to a spatially disconnected moving area.
Thus, the first observation is that a correlation
measure of the displacement based on geometric
and/or geostatistical criteria is necessary.
At this point, having selected only prisms 1, 2 and
3, it is possible to notice that the LoS deformation
in the interpolation point is greater than any LoS
deformation measured by any of the three prisms.
This can be explained by two opposite assumptions:
it is possible to consider the deformation vector
direction to be roughly similar to the prisms one,
while its magnitude increases at the interpolation
point:

û(x)∼ ∆r(x)
un · e(x)

un. (5)

Conversely, it is possible to assume that the vector
magnitude remains constant while its direction be-
comes more aligned with the radar LoS:

û(x)∼ un +(∆r(x)−un · e(x))e(x) (6)

Since the TRI location is arbitrary and independent
from the actual slope displacement, requiring an
alignment along its LoS direction (6) seems an
unrealistic imposition. For this reason, in the
proposed method, the vector rescaling hypothesis
(5) will be preferred to the vector alignment one.
This specific example is meant to illustrate the
more generic slope monitoring cases, where various
deformation processes coexist, and even within a

single process, the vector field can be quite variable.
Clearly, the most generic slope monitoring case
may present even more complex aspects (e.g.,
deformation processes with overlaps or complex
discontinuities) whose management goes beyond
the scope of this work.

3 Method

Having defined the main characteristics of the data
acquired by RTS and TRI, together with the as-
sumptions made for the interpolation, it is now pos-
sible to describe the details of the proposed method.

3.1 TRI calibration

The first step of the method consists of the removal
of TRI measurement bias due to the atmospheric
residuals. The TRI measurement calibration is per-
formed by exploiting the RTS measurements. To
this purpose, combining expectation values equa-
tions (1) and (3), it is possible to derive a relation
for TRI bias evaluated in RTS measurement points:

b(xn) = E[∆r(xn)]−E[un · e(xn)], (7)

which simply tells us that it is possible to provide
a bias coefficients estimation b̂k, by comparing the
TRI measurements with the RTS measurements pro-
jected along the radar LoS direction. The coeffi-
cients can be estimated by means of a least square
regression that minimizes the following functional:

N

∑
n=1

[b(xn)+un · e(xn)−∆r(xn)]
2 (8)

and then used to remove the measurement bias from
TRI data

∆r(x)→ ∆r(x)−
K

∑
k=1

b̂k fk(x) (9)

In figure 4 is shown a TRI map with the corre-
spondent RTS LoS measurements. the compari-
son between a radar map before and after a cali-
bration. It is possible to notice that, at a qualita-
tively level, there is a good correspondence between
the two datasets but, quantitatively, the RTS tends
to measure a higher LoS deformation than the TRI.
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After the calibration procedure (figure 5), the two
datasets also agree on a quantitative level. However,
it should be noted that outside the prism network, at
the right and lower-left boundaries of the map, the
calibration procedure introduced unrealistic results.
These are typical effects due to extrapolation, and
for this reason, only results that fall within the prism
network should be considered.

Figure 4. Uncalibrated radar map, overlaid with
prism measurements projected onto the TRI LoS

Figure 5. Calibrated radar map, overlaid with
prism measurements projected onto the TRI LoS

3.2 Vector field estimation

Once the potential bias has been removed from the
TRI measurements, and thus having ensured that
the two datasets are consistent with each other, it is
possible to proceed with the computation of vector
field estimation û(x). As mentioned in section 2.3,
this can be considered as an interpolation problem;

therefore, the estimated vector field can be decom-
posed as:

û(x) =
N

∑
n=1

λn(x)un (10)

where λn(x) are unknown coefficients to be deter-
mined. In standard interpolation problems, this rela-
tion is complemented by a normalization constraint
on the coefficients. However, in this case, normal-
ization to one is not compatible with the constraint
given by the TRI measures, which can be written as
follows:

N

∑
n=1

(un · e(x))λn(x) = û(x) · e(x) = ∆r(x) (11)

Therefore, to follow the TRI observations, instead
of the usual normalization, the constraint (11) will
be imposed on the interpolation coefficients. For the
sake of simplicity, let’s now suppose to know a cor-
relation measure ρ(x,xn) of slope deformation be-
tween the point x and points xn. This correlation
function should incorporate the criteria discussed in
section 2.3, and it could be calculated on the ba-
sis of geometric, statistical, or geological concepts
(Li and Heap, 2023) (Chiles and Delfiner, 2012).
In the present work, a purely geometric measure
was used, based on the distance between the points:
ρ(x,xn) ∝ |x−xn|−2 nevertheless, for future devel-
opments, it would be desirable to be able to define
a measure that exploits statistical information like
variograms or geological information like disconti-
nuity planes.
Measurements that come from prisms whose defor-
mation is completely uncorrelated to the one un-
der examination should not contribute to the cor-
responding interpolation. To enforce these require-
ments, it is plausible to assume that good interpola-
tion coefficients λn(x) should be proportional to the
correlation function. To express this requirement,
auxiliary coefficients κn(x) are introduced:

λn(x) = κn(x)ρ(x,xn) (12)

The last requirement, which allows the interpolation
coefficients final calculation, is the minimization of
û(x) variance. This can be done by minimizing the
following cost function F ,
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F =
1
2
(E[û(x) · û(x)]−E[û(x)] ·E[û(x)])−

µ(E[û(x)] · e(x)−∆r(x))
(13)

where a Lagrange multiplier µ has been introduced
to enforce the condition (11). Inserting equations
10 and 12 in this functional and exploiting the sim-
ple homoschedasticity assumption it is possible to
rephrase the minimization problem in terms of co-
efficients κn:

F(κn,x) =
1
2

N

∑
n=1

ρ
2(x,xn)κ

2
n−

µ(
N

∑
n=1

ρ(x,xn)(um · e(x))κn −∆r(x))
(14)

The minimization of F leads to an expression for
κn(x) which, when inserted into the equations (12)
and (10), allows to obtain the searched deformation
vector estimation:

û(x) =
∆r(x)∑

N
n=1 ρ(x,xn)(un · e(x))un

∑
N
m=1 ρ(x,xm)(um · e(x))2

(15)

As expected, this expression satisfies the TRI con-
straint (11), furthermore, it suppresses the contribu-
tions of prisms for which ρ(x,xn) or un · e(x) are
almost zero.

4 Case study

To illustrate the potential of TRI and RTS data fu-
sion, the proposed method was applied on a real
open-pit monitoring campaign. The scenario con-
sidered is an open-pit gold mine, approximately 3.3
km wide and 550 m deep. RTS and TRI systems
were installed in front of the pit’s south-wall and
acquired continuously for a month. RTS surveyed a
total of 47 prisms deployed along the slope, whereas
TRI was able to measure the LoS ground displace-
ment of 250 thousand radar pixels distributed on
the terrain surface. The slope had several zones of
motion, with various spatial extensions and various
rates and directions of deformation, and it is there-
fore a good test site to evaluate the potential of the
proposed method.
In this example, the correlation measure ρ(x,xn)

was calculated on the basis of pure geometric as-
pects as explained in the previous section. The final
results of the entire data fusion algorithm are pre-
sented in figure 6 and figure 7, where the measured
prisms vectors (in light blue) and the estimated vec-
tor field (in black) are overlaid on the calibrated TRI
map.

Figure 6. Case study, data fusion vector field
global view

Figure 7. Case study, data fusion vector field de-
tailed top view

From these figures, it can be seen that the orien-
tation and magnitude of the vector field densely
interpolate the three-dimensional slope behaviour,
allowing for better interpretation of the kinematics
of movements observed in the slope. In particular,
in figure 7 is shown the top view of the resulting
vector field, where it is possible to notice that the
deformation vectors align well along the slope’s
steepest direction, as expected from a gravity-
induced phenomenon.
However, it is important to remark that due to
the sparse distribution of prisms, various moving
areas covered by the TRI map are not adequately
surveyed by the RTS. As an example, in figure 8
it is possible to observe a portion of the south-est
wall where no prisms are installed, despite different
kinds of deformations have been revealed by the
TRI monitoring. In particular, it is possible to
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observe a fast-moving area where no prism has
been installed inside. In this specific area, the
vector field is oriented obliquely respect to the
steepest direction of the slope, and even in the
absence of a ground truth, it is plausible to assume
that the estimated vector does not correspond to the
real deformation direction.

Figure 8. Case study, data fusion vector field south
east wall

The misalignment occurs because, to reconstruct
this vector, prisms measurements from uncorrelated
deformation processes were used. This unwanted
condition can be properly mitigated only if an ad-
equate spatial sampling of prisms is available. In
cases like the present one, where the prisms do not
adequately sample all the deformation processes, it
would be desirable to develop a method to deter-
mine at which points it makes sense to reconstruct
the vector field and at which points it is not possi-
ble to provide a reliable estimation. In order to do
that, it is probably necessary to introduce inside the
correlation measure computation, some geostatisti-
cal factors that describe the degree of dependence of
the various slope movements. With this information
it should then be possible to determine whether a
given interpolation point has enough prisms related
to it for the vector reconstruction.

5 Conclusion

In this work, the fusion of RTS and TRI monitoring
data has been investigated by proposing a method
for the estimation of three-dimensional deformation
vector field. From the analysis of section 2.3, it is
clear that there is a strong potential for the integra-
tion of these two monitoring systems. TRI provides
a density and continuity of measurements not ob-
tainable with prisms survey. On the other hand, RTS
data can help to calibrate RTS results. A method

that allows the fusion of data acquired by RTS and
TRI would bring an immediate benefit, especially
in the open-pit mine monitoring sector, where both
technologies are already used in combination. The
method proposed in this work was tested on a typi-
cal mining scenario; the resulting vector field shown
in section 4 clearly demonstrates the potential and
usefulness of this approach in open-pit slope moni-
toring. The method still has some limitations, par-
ticularly related to the vector extrapolation in areas
not adequately covered by the prisms. To address
these limitations, in section 4 a possible strategy
has been proposed. Starting from the concepts pre-
sented in this work, there are several future develop-
ments that could significantly enhance the method
proposed here. Among them, it is worth men-
tioning the possibility of combining RTS data with
those coming from multiple independent radar sys-
tems, whether they are terrestrial or satellite-based.
This redundancy of measurements will surely lead
to more accurate and reliable results.
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