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Abstract 

In today's landscape, both natural and man-made features are highly sensitive to millimetric 
perturbations from land deformation and daily operational activities. However, continuous, 
automated, and remote monitoring systems are often unavailable or too costly for widespread use. 
AIPLAN aims to address this gap by safeguarding critical infrastructure through cost-effective 
solutions. AIPLAN integrates geodetic engineering, Global Navigation Satellite Systems (GNSS), 
and Synthetic Aperture Radar (SAR) for land deformation. The project focused on creating a cloud-
based platform with Real-Time Kinematic (RTK) algorithms for high-precision deformation 
measurements and employing AI/ML analysis for comprehensive data processing from GNSS. The 
key innovation of AIPLAN is the development of a deployable system using low-cost GNSS devices, 
moving away from expensive survey instruments. The AIPLAN device is a compact, cost-effective, 
high-precision multi-sensor GNSS receiver package, integrating control boards, multi-constellation 
GNSS chipsets, Inertial Measurement Units (IMU), and IoT modules. It is designed to measure sub-
centimetre movements and vibrations in various modes, including RTK and Network RTK. The 
project also developed a machine learning system to enhance the accuracy and reliability of low-cost 
GNSS devices. Filtering techniques and AI algorithms improved data precision. Calibration was 
performed using corner reflectors, GNSS survey control markers, and geodetic-grade GNSS 
receivers. The prototype was deployed at a test site, and the 18-month project included testing and 
validation. Monitoring scenarios on railway tracks, landslide-prone areas, and controlled sites 
demonstrated AIPLAN's effectiveness and efficiency, making it a valuable tool for infrastructure 
protection. 
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1 Introduction  

Accurate and cost-effective ground monitoring is 

essential for safeguarding infrastructure, managing 

land use, and mitigating geohazards. However, 

traditional geodetic monitoring solutions rely on 

high-end GNSS receivers and other precision 

instruments, making widespread deployment 

financially and logistically challenging. The 

AIPLAN project was developed to address this gap 

by integrating low-cost GNSS technology with 

artificial intelligence (AI) and Interferometric 

Synthetic Aperture Radar (InSAR) to deliver a 

robust, scalable, and economically viable solution 

for land deformation monitoring. By leveraging 

machine learning algorithms, AIPLAN enhances 

the accuracy and reliability of low-cost GNSS 

observations, making continuous monitoring 

accessible for a wide range of applications, 

including rail infrastructure, landslide-prone areas, 

and urban development. The InSAR data processing 

in AIPLAN was conducted by SatSense, a leading 

provider of ground motion analysis derived from 

satellite radar data, ensuring accurate and consistent 

surface deformation measurements. 

Geospatial Ventures Ltd. (GVL) is a UK-based 

geospatial technology company dedicated to 

advancing the integration of geodetic techniques, 

satellite-based positioning, and AI-driven data 

processing. With a strong research and development 

focus, GVL has collaborated with industry partners 
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and academic institutions to create innovative 

solutions for geospatial data collection and analysis. 

The company specializes in GNSS-based 

monitoring, remote sensing, and intelligent 

automation of spatial data processing, ensuring that 

cutting-edge technologies can be applied in real-

world scenarios to improve efficiency, accuracy, 

and accessibility. 

This paper presents the research and development 

efforts undertaken in the AIPLAN project. Section 

2 provides an overview of the state-of-the-art in 

low-cost GNSS monitoring, AI-enhanced GNSS 

processing, and the integration of GNSS with 

InSAR. Section 3 outlines the technical design and 

specifications of the AIPLAN system, detailing the 

hardware and software components. Section 4 

discusses the experimental validation and field 

deployments, including case studies in rail 

infrastructure monitoring and land deformation 

analysis. Finally, the results of AI-enhanced GNSS 

processing and performance evaluations are 

presented, demonstrating the effectiveness of the 

AIPLAN system in achieving sub-centimetre 

accuracy in real-world conditions. 

2 State of the Art 

Global Navigation Satellite System (GNSS) has 

become a fundamental tool in geodetic 

measurements, enabling precise positioning for 

applications such as structural health monitoring, 

landslide detection, and tectonic studies. Geodetic-

grade receivers offer millimetre-level accuracy, but 

their high cost has limited their use to specialized 

applications. The introduction of low-cost GNSS 

receivers, particularly dual-frequency models, has 

expanded access to high-precision positioning. 

Studies have shown that when coupled with high-

quality geodetic antennas and correction services 

like Real-Time Kinematic (RTK) and Precise Point 

Positioning (PPP), low-cost GNSS receivers can 

achieve sub-centimetre accuracy in open-sky 

environments (Neely et al., 2021). However, their 

performance deteriorates in obstructed conditions 

due to multipath effects and signal blockages (Yan 

et al., 2022). Moreover, while low-cost GNSS offers 

an affordable alternative, its integration into 

geodetic monitoring requires robust error mitigation 

strategies, including the application of AI-driven 

techniques (Zhou et al., 2021). 

Artificial Intelligence (AI) and Machine Learning 

(ML) are increasingly being employed to improve 

GNSS data processing by predicting and correcting 

errors caused by atmospheric effects, multipath 

interference, and receiver biases. Traditional 

statistical approaches have been used for GNSS 

error modelling, but ML techniques offer the 

advantage of identifying complex, non-linear 

dependencies within large datasets (Yan et al., 

2022). Various models, including Support Vector 

Machines (SVM), Random Forest (RF), and 

Artificial Neural Networks (ANN), have been 

applied for anomaly detection, error correction, and 

signal enhancement (Liu et al., 2023). Kalman 

filtering has long been used for GNSS data fusion, 

but AI-driven techniques such as Recurrent Neural 

Networks (RNN) and Attention Mechanism with 

Long Short-Term Memory (AMLSTM) have 

demonstrated significant improvements in GNSS 

error prediction (Wang et al., 2021). These methods 

have shown the potential to refine time-series 

deformation analysis by incorporating additional 

metadata such as signal-to-noise ratio and 

environmental conditions (Yan et al., 2022). 

While GNSS provides accurate point-based 

deformation measurements, it lacks the spatial 

resolution necessary for large-scale monitoring. 

InSAR, on the other hand, offers wide-area 

deformation mapping through radar phase 

difference analysis (Zhou et al., 2021). However, 

InSAR measurements are susceptible to 

atmospheric disturbances and can only detect 

deformation in the satellite's line-of-sight direction 

(Neely et al., 2021). The fusion of GNSS and InSAR 

has been explored to overcome these limitations, 

with AI-based techniques playing a pivotal role in 

integrating these datasets. Methods such as 

Multiresolution Segmentation Fusion (MRSF) and 

Helmert Variance Component Estimation (HVCE) 

have been developed to automatically classify 

deformation characteristics and integrate GNSS-

InSAR measurements for enhanced monitoring 

accuracy (Yan et al., 2022). The combination of 

InSAR's spatial coverage with GNSS’s absolute 

positioning capabilities has led to improved three-

dimensional deformation modelling, particularly in 

urban and mining environments (Liu et al., 2023). 

Despite these advances, several challenges must be 

addressed before AI-enhanced GNSS and InSAR 

integration can be widely adopted. Data quality and 

availability remain critical concerns, as AI models 

require large, high-quality datasets for training (Yan 

et al., 2022). Additionally, environmental 

variability, such as vegetation-induced 

decorrelation in InSAR and urban obstructions 

affecting GNSS signals, poses challenges to the 

robustness of AI models (Zhou et al., 2021). The 

lack of explainability in deep learning approaches is 
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another issue, as transparency is essential for 

scientific validation and regulatory acceptance (Liu 

et al., 2023). Future research should focus on 

optimizing AI architectures, integrating physics-

informed ML models, and developing real-time 

processing frameworks to support continuous large-

scale monitoring applications (Wang et al., 2021). 

The growing availability of open-source GNSS 

processing software, such as RTKLIB, and cloud-

based correction services further supports the 

development of AI-driven geodetic monitoring 

solutions (Neely et al., 2021). 

While significant progress has been made in 

integrating GNSS and InSAR for land deformation 

monitoring, several gaps remain in the current state 

of the art. There is limited research on the long-term 

stability and accuracy of low-cost GNSS receivers 

in highly dynamic or obstructed environments. 

Most AI models applied to GNSS focus on error 

mitigation rather than real-time adaptive learning, 

which could enhance prediction accuracy in 

changing conditions. Additionally, while the fusion 

of GNSS and InSAR has been explored, there is a 

lack of standardized methodologies for multi-sensor 

integration, particularly in the presence of 

heterogeneous noise sources. AI-driven fusion 

techniques remain in early development stages, with 

many approaches lacking validation on large-scale 

datasets. Further research is needed to improve 

model generalization, develop robust multi-sensor 

data assimilation frameworks, and ensure AI 

explainability for operational deployment in 

geodetic monitoring systems (Liu et al., 2023; Yan 

et al., 2022; Zhou et al., 2021). 

3 Design and Specification 

3.1 System Specification and 

Implementation 

The developed AIPLAN system integrates Global 

Navigation Satellite System (GNSS) and 

Interferometric Synthetic Aperture Radar (InSAR) 

measurements with Artificial Intelligence (AI) 

methodologies to enhance land deformation 

monitoring. The system consists of multiple GNSS 

receivers, co-located InSAR corner cube reflectors, 

and a centralized data processing architecture. 

 

3.2 Hardware Design 

The GNSS receivers were designed with integral 

Wi-Fi capability and operated through an internet 

gateway device that facilitated cellular connectivity. 

For scenarios where the receivers were positioned 

beyond standard Wi-Fi range, the receivers’ built-in 

cellular capability was employed to ensure 

consistent data transmission. The receivers were 

self-powered using battery packs that were 

recharged via solar panels, enabling continuous 

operation in remote locations without direct access 

to mains power. To ensure data integrity, all 

receivers operated at a 1Hz update rate. 

A key component of the system was the use of dual 

geometry InSAR corner reflectors, which were 

strategically positioned to align with both ascending 

and descending satellite passes. This configuration 

allowed independent analysis of vertical 

displacement across multiple InSAR passes, 

reducing systematic biases and improving the 

accuracy of vertical motion estimation. The corner 

reflectors were designed to be adjustable, 

facilitating precise alignment with satellite orbits. 

3.3 Communication and Data 

Processing 

The system relied on an NTRIP-based data 

transmission model. A dedicated GNSS base station 

streamed RTCM correction data to the cloud-based 

NTRIP caster, which in turn provided real-time 

correction data to the rover receivers. Positioning 

results were processed on-site and uploaded to a 

tracking server via MQTT. The server stored, 

visualized, and analysed GNSS time series data, 

allowing remote access for system performance 

monitoring. 

3.4 Performance and Verification 

The system was designed to achieve sub-centimetre 

accuracy in horizontal positioning (1-5 mm) and in 

vertical positioning (2-5 mm). Empirical tests 

confirmed that GNSS RTK alone provided reliable 

positioning in open-sky environments. Testing also 

confirmed that the receivers functioned 

autonomously for extended periods, with the solar 

power system reliably maintaining charge levels 

even in overcast conditions. Wi-Fi communication 

enabled seamless data transmission up to 250 

meters, with cellular communication supporting 

longer-range connectivity when required. 

4 Experimental Validation and Field 

Deployments 

4.1 Test Plan 

The AIPLAN system underwent rigorous testing at 

multiple sites to evaluate its accuracy, performance, 
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and reliability. The test plan was designed to 

validate the system’s ability to integrate GNSS and 

InSAR data using AI/ML methodologies while 

ensuring real-world applicability. 

Testing was conducted at three primary locations: 

The Tadcaster Farm Site, owned by the University 

of Leeds, The Black Country Innovative 

Manufacturing Organisation (BCIMO) Very Light 

Rail National Innovation Centre (VLRNIC) in 

Dudley, West Midlands, and Derbyshire County 

Council's Snake Pass Test Site. The test setup at 

each location included GNSS receivers, InSAR 

corner reflectors, and a combination of controlled 

and natural deformation scenarios. 

At The Tadcaster Farm Site, long-term controlled 

tests were performed to train AI/ML models. The 

site featured four InSAR corner reflectors, each 

equipped with a GNSS antenna. Controlled height 

changes were introduced at one reflector (CR2) by 

incrementally removing 5mm shims, allowing the 

system’s response to controlled displacement to be 

assessed. GNSS RTK measurements were collected 

continuously, with additional validation through 

Total Station, Geodetic GNSS, and InSAR surveys. 

At BCIMO's Rail Test Track, GNSS receivers were 

installed to monitor potential movement of track 

slabs. The setup included a roof-mounted GNSS 

base station and trackside receivers fixed to 

instrumented slabs. Data was collected 

continuously, with initial height assessment 

showing millimetre-level accuracy. The Rail Test 

Track, operated by the Black Country Innovative 

Manufacturing Organisation (BCIMO), is a 2.2 km 

standard gauge single track designed for vehicle 

performance testing and infrastructure monitoring.  

At Derbyshire County Council's Snake Pass site, 

GNSS receivers and InSAR reflectors were 

deployed to monitor natural ground deformations in 

a landslide-prone area. This site provided an 

opportunity to validate the system’s effectiveness in 

detecting slow-moving subsidence and sudden 

displacement events. GNSS data was transmitted 

via an NTRIP-based system, and InSAR data was 

processed using the Small Baseline Subset 

Interferometric Synthetic Aperture Radar (SBAS-

InSAR) method. 

4.2 Test Results 

Tadcaster Farm Site: Comparative Analysis of 

GNSS, Total Station, and InSAR Measurements 
 

The Tadcaster Farm Site served as a controlled 

environment to evaluate the precision and reliability 

of Global Navigation Satellite System (GNSS), 

Total Station, and Interferometric Synthetic 

Aperture Radar (InSAR) techniques in detecting 

small ground deformations. Four corner reflectors 

(CR1, CR2, CR3, and CR4) were strategically 

installed, each equipped with GNSS receivers to 

facilitate continuous monitoring (Figure 1). 

 

Figure 1 - Site layout at Tadcaster farm site 

To simulate subsidence, controlled vertical 

displacements were introduced at CR2 by 

systematically removing 5mm shims at 

predetermined intervals. This methodical approach 

allowed for a direct assessment of each technique's 

capability to detect and measure the induced 

displacements accurately. 

 

 
Figure 2 - One of the Corner Reflectors at Tadcaster 

farm site 

The Total station data was collected as follows. The 

targets installed on the corner reflectors can be seen 

in Figure 2. A Leica TS16 1-second robotic total 

station was employed for monitoring CR 

movements. 

Each CR features five designated target points 

suitable for repeated measurements. These targets 

have been surveyed at least once a month from 

November 2023 to August 2024. 

Due to the absence of stable points within the field 

and the inability to establish a long-term control 
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station, the total station surveys provide relative 

measurements between the CRs. The results yield 

delta heights and delta distances between the 

receivers.  

During each survey, the total station was set up near 

the CRs, approximately in the centre between CR1 

and CR4 with a slight offset from the straight line 

connecting the four CRs. 

During each periodic survey each of the 5 targets on 

each of the 4 CRs was measured 3 times and the 

differences between the measurements were 

checked to make sure they were within tolerance. 

Standard deviations of these 3 measurements range 

from 0mm to 1mm. 

Table 1 Schedule of Simulated Height Changes at Tadcaster 

test site 

Month Proposed 
Height 

Adjustment 

Actual Height 
Adjustment 

April 2024 Default 
height 

Default 
height 

May 2024 -5mm 
(compared to 

default) 

Default 
height 

June 2024 -10mm -5mm (29th 

May) 

July 2024 -15mm -10mm (1st 
July 2024) 

August 2024 -20mm -15mm (6th 
August 2024) 

September 
2024 

-20mm N/A 

 

The relative height time series of the Total Station 

survey to CR2 is presented in Figure 3. The purpose 

of this survey was to establish a highly accurate, 

millimeter-level, reliable method for comparison 

with InSAR and GNSS measurements. This 

approach was designed to serve as a trusted, 

repeatable benchmark for validating the accuracy 

and consistency of the InSAR and GNSS data. 

the pattern of shim removal for CR2 is given in 

Table 1. It should be noted that there were larger-

than-expected discrepancies from epoch to epoch 

for the "a" point (in blue in Figure 3) on CR2s. We 

are aware of an issue when attaching the targets to 

the threads, which caused some unintended 

movement. This issue was resolved in May by 

tightening the threads. As a result, data collected 

after May show significantly lower discrepancies. 

Additionally, various targets were used during the 

first few months of the survey, but the same targets 

were always used for the same survey, so this should 

not affect the calculation of delta heights. There 

may have been some incorrect settings in the Total 

Station, although the exact cause of the 

discrepancies remains unclear.  

The GNSS time series of CR2 over 5 months is also 

shown in Figure 3. The plot shows the daily average 

of all ambiguity fixed points that have also been 

filtered for outliers. The height shows clear 

subsidence after the 29th May due to the artificially 

induced subsidence on CR2 from removing the 

5mm shims. There are some unexpected jumps in 

the height during the time series. These are due to 

the very small number of ambiguity fixed solutions 

during those particular 24-hour periods. There are 

gaps in the data due to power and communication 

issues. 

 

 
Figure 3 - GVL GNSS Height Timeseries CR2 Spen Farm 

Tadcaster, Top is measurements to the reflectors on the CR 

using a Total Station and Bottom the GVL RTK solution. 

 
Figure 4 – InSAR height time series for CR1, CR2, CR3 and 

CR4 

Figure 4 shows Reflector performance has remained 

steady since their installation. The pattern of 

average velocity among different corner reflectors 

and across various tracks is largely consistent. 

Changes in average velocities are expected due to 
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the relatively short duration of the data collection 

(~12 months), with uncertainty arising from noise 

and non-linear motion, such as seasonal variations. 

All four plots for CR2 show a clear downward trend 

that aligns well across all satellite passes. CR2 

exhibits artificially induced movement starting on 

May 29th, which is clearly visible in the time series 

plots after this date. The initial 5mm induced 

movement on May 29th is distinct, and the second 

5mm artificial movement applied in June is also 

reflected in the July InSAR data.  

These movements appear approximately 5mm 

(slightly less in most plots around 4mm). The recent 

acceleration of CR2 away from the satellite 

(negative displacement) observed across all four 

tracks further confirms that this motion is real and 

agrees well with the Total Station data. However, it 

is important to note that the InSAR survey does not 

consider the recently induced subsidence of CR2 in 

August. 

Notably, after the initial artificial subsidence on 

May 29th, the InSAR data shows a slight uplift 

between May 29th and July in the ascending tracks, 

prior to the second artificial subsidence. This 

observation is consistent with the Total Station 

surveys, which suggest a minor uplift of CR2 

relative to CR1 between the two artificial 

subsidence events. 

 GNSS Observations: The GNSS receivers 

provided high-frequency positional data, 

capturing the stepwise height reductions at 

CR2 with remarkable precision. Each removal 

of a 5mm shim corresponded to a detected 

subsidence of approximately 4.8mm to 5.2mm, 

indicating the system's sensitivity to sub-

centimetre changes. 

 Total Station Measurements: Periodic surveys 

using a Total Station offered high-accuracy 

distance and angle measurements. The results 

closely mirrored the GNSS data, with detected 

height changes ranging from 4.9mm to 5.1mm 

per shim removal. The minor discrepancies 

between GNSS and Total Station 

measurements underscore the importance of 

integrating multiple surveying methods to 

enhance reliability. 

 InSAR Analysis: Utilising Sentinel-1 satellite 

data, InSAR provided a temporal analysis of 

surface deformations. While InSAR 

successfully identified the cumulative 

subsidence at CR2, the technique exhibited a 

slight latency in detecting individual 5mm 

adjustments, primarily due to its longer revisit 

intervals and sensitivity to atmospheric 

conditions. 

A comparative analysis of the three methodologies 

revealed a high degree of concordance in the 

cumulative displacement measurements over the 

testing period. The GNSS and Total Station data 

demonstrated near-real-time responsiveness to the 

induced subsidence events, whereas InSAR offered 

valuable insights into the broader deformation 

trends with a slight temporal offset. 

Very Light Rail National Innovation Centre 

(VLRNIC) Rail Test Track: GNSS Data Collection 

The Very Light Rail National Innovation Centre 

(VLRNIC) Rail Test Track, operated by the Black 

Country Innovative Manufacturing Organisation 

(BCIMO), provided a dynamic setting to assess the 

efficacy of GNSS technology in monitoring 

structural movements of rail infrastructure. The 

facility features a 2.2km continuous welded single 

rail track, adhering to Network Rail's 100mph 

standard, and is divided into four testing zones, 

including an 870m curved tunnel section.  

A GVL prototype receiver was installed on the 

Innovation Centre building adjacent to the track 

loop, with the antenna mounted on the roof's safety 

frame for an unobstructed sky view. The receiver, 

housed in a waterproof box and powered by a USB-

C mains adapter, is connected to a nearby mains 

outlet. The cellular router is mounted on the 

building’s front face, overlooking the track loop, 

and is similarly housed and powered. 

Additionally, two antenna mounting points were 

installed adjacent to the tracks on instrumented 

slabs (Figure 5). The installation includes brass 

plates with mounting studs, short survey poles, and 

protective sleeves, designed to withstand future 

tarmac overlay up to the rail track height. 

For this study, GNSS receivers were strategically 

installed on two track slabs, designated as Slab 12 

and Slab 20, to capture real-time positional data 

over an extended monitoring period. The primary 

objective was to detect and analyse any structural 

displacements or movements that could impact the 

track's integrity and performance. 
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 Data Acquisition: The GNSS units operated 

continuously, recording positional data with 

high temporal resolution. The collected data 

streams were transmitted to a centralized 

processing system for analysis. 

 Observations at Slab 20 (See Figure 6): The 

GNSS time series for Slab 20 indicated minor 

vertical fluctuations, with variations typically 

within ±2mm. These slight changes are 

attributed to normal thermal expansion and 

contraction effects, as well as minor settling of 

the track structure. 

The deployment of GNSS technology at the 

VLRNIC Rail Test Track has demonstrated its 

capability to provide precise, real-time monitoring 

of rail infrastructure. The insights gained from this 

data are instrumental in informing maintenance 

strategies and ensuring the safety and reliability of 

rail operations. 

 

 
 

 
Figure 5 – Details of the trackside antenna mounts. 

 

 
Figure 6 – GVL GNSS Time Series at Dudley Slab20 

5 GNSS AI Analysis and Results 

Our analysis began by examining the raw GNSS 

receiver data for a single day. Extreme values, 

primarily caused by bad fixes, obscure the finer 

details of the signal. To address this, we apply 

standard preprocessing steps that remove these 

extreme values, revealing two distinct components: 

high-frequency white noise and a lower-frequency 

error pattern (Figure 7). We hypothesise that this 

lower-frequency component corresponds to 

repeatable and predictable multipath errors. 

 

 

Figure 7 – Anomaly and outlier detection via AI 

The variations in the low-frequency signal are likely 

influenced by satellite constellation-receiver 

geometry changes as satellites move across the sky. 

Two primary factors contribute to these variations: 

antenna phase centre variations and the local 

multipath environment. Multipath is the more 

probable cause, given the magnitude of the observed 

effects. While isolating the exact cause is not 

necessary, recognising the impact of changing 

satellite geometry allows us to investigate the effect 

systematically. 

Future work will focus on refining our neural 

network to improve error statistics for unseen data, 

a challenge we have so far only managed manually 
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using long training periods. Given this success, we 

aim to configure the neural network to achieve 

similar results with shorter training datasets. 

Specifically, we plan to train the model using an 

initial period of approximately 10 days of 

continuous 24/7 data at 1Hz, after which we will 

transition to a reduced duty cycle to lower power 

demands while maintaining comparable 

performance. This will require optimising the 

model’s ability to generalise from limited data and 

ensuring it can effectively apply learned patterns to 

new scenarios. By enhancing these aspects, we aim 

to develop a more efficient and adaptive AI-driven 

system that balances data availability, power 

consumption, and predictive performance. 

6 Conclusion 

The AIPLAN project has successfully demonstrated 

the feasibility of integrating low-cost GNSS 

receivers with AI-driven processing techniques and 

InSAR for cost-effective, high-precision land 

deformation monitoring. By utilizing machine 

learning models to mitigate GNSS errors, enhance 

multipath correction, and improve positioning 

accuracy, AIPLAN provides a scalable solution for 

continuous geospatial monitoring in various 

environments. The system has been tested in 

multiple real-world applications, including railway 

infrastructure assessment and landslide-prone area 

monitoring, where it has shown reliability and 

precision comparable to high-end geodetic systems. 

The integration of InSAR data processed by 

SatSense has further strengthened the system’s 

ability to detect and analyze surface movements 

with high temporal and spatial resolution. 

Through the collaborative efforts of Geospatial 

Ventures Ltd., Loughborough University and 

SatSense, AIPLAN has demonstrated that AI-

enhanced geodetic monitoring can bridge the gap 

between cost and performance, enabling wider 

adoption of GNSS-based monitoring solutions. The 

findings of this project pave the way for future 

research into adaptive AI models, real-time data 

fusion techniques, and multi-sensor geospatial 

integration. As the demand for intelligent land 

monitoring grows, the continued development and 

refinement of AIPLAN’s methodologies will be 

critical in advancing sustainable and resilient 

infrastructure management. 
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