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Abstract 

Landslides are a pervasive natural hazard with significant societal and environmental impacts. Several 

methods for monitoring landslides exist, including comparing point clouds from two different epochs 

directly using the M3C2 algorithm. The main challenge for existing methods is the size of point cloud 

data sets, which are not computationally efficient enough to process in real time. In this research, we 

develop an algorithm for real-time landslide monitoring by using a mixture of contour lines to cluster 

deformed areas and feature tracking to detect small deformations in the pre-clustered areas. The first 

step involves roughly identifying the deformed area because applying feature extraction and matching 

on the entire data set is computationally intensive and time-consuming. Detecting these small 

deformations in the deformed areas, which happens in the feature tracking, could be helpful in 

predicting the next stage of a landslide and issuing necessary warnings. The method was tested on a 

controlled laboratory dataset, providing an ideal environment to validate the method’s precision, 

achieving sub-millimeter accuracy under controlled conditions. The results showed that the method 

is well-suited for real-time monitoring, accurately detecting the deformation's magnitude and direction. 

Keywords: Deformation Analysis, Terrain deformation, Feature Detection, Hillshade, Permanent Laser 

Scanning 

 

1 Introduction  

Landslides are one of the most destructive 

geological hazards, leading to considerable property 

damage and posing serious safety risks worldwide. 

They occur due to the gravitational movement of 

material down a slope. Various factors, including 

heavy rainfall, earthquakes, volcanic eruptions, and 

human activities can trigger landslides. Their 

impact extends to critical infrastructure, such as 

roads and buildings, endangering human lives 

(Hosseini et al., 2023). According to the World 

Health Organization, between 1998 and 2017, 

landslides affected approximately 4.8 million 

people and resulted in over 18,000 fatalities. 

Because of that, several research studies have been 

done to monitor and predict the components of 

landslides (Casagli et al., 2023; Chae et al., 2017). 

One notable workflow among these methods offers 

high spatial resolution monitoring; however, it 

remains unsuitable for real-time applications. This 

approach involves extracting features from point 

clouds obtained using terrestrial laser scanners 

(Hosseini et al., 2023). In this study, we outline 

some of the limitations of this method and set forth 

specific goals to enhance its applicability to real-

time data sets, thereby improving its usefulness. 

These goals include (a) modifying the algorithm to 

handle real-time data more effectively and (b) 

identifying ways to overcome its limitations to 

enhance landslide monitoring and prediction 

techniques. We evaluate this new concept based on 

laboratory experiments with known reference 

movements. 

2 Literature Review 

Landslide monitoring techniques can generally be 

classified into two main categories: real-time 

(permanent) and periodic (intermittent) monitoring. 
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Each approach has distinct advantages and 

limitations, depending on the application, available 

resources, and desired accuracy. 

2.1 Real-time Permanent Monitoring 

Real-time monitoring collects and analyzes data to 

detect deformations as they occur. Such monitoring 

is necessary for early warning systems and high-risk 

areas where immediate action is required. The most 

common real-time method is the Global Navigation 

Satellite System (GNSS), which tracks ground 

movement continuously to millimeter accuracy 

(Huang et al., 2023; Shu et al., 2023). When 

deployed in landslide-prone regions, GNSS stations 

permit 24/7 displacement monitoring. However, 

high installation costs caused some research to 

focus on low-cost GNSS for this purpose (Bellone 

et al., 2016). Moreover, the other main disadvantage 

of using GNSS for permanent monitoring is spatial 

coverage constraints, which limit its application to 

only discrete points and not the whole surface. 

The other major real-time monitoring approach is 

Terrestrial Laser Scanning (TLS), which 

periodically takes high-resolution 3D point cloud 

data. In landslide-prone areas, TLS allows the 

detection of small-scale topographic changes 

(Anders et al., 2019; Winiwarter et al., 2023). While 

TLS gives detailed spatial data, data processing 

complexity makes real-time computation 

impossible. To overcome this, researchers have 

developed feature-based deformation tracking and 

automated change detection algorithms. This 

method is applied practically in the AImon5.0 

project for monitoring a rock face located in Trier 

(Czerwonka-Schröder et al., 2025). 

Other real-time monitoring methods use 

inclinometers, extensometers, and fiber optic 

sensors to record subsurface and surface movements 

such as (Wang et al., 2015). They are very sensitive 

instruments that need frequent calibration and 

maintenance and, thus, are suitable for localized 

studies rather than large-scale applications. 

Furthermore, these methods cannot detect 

deformation directly, and their results need to be 

interpreted.  

2.2  Periodic Monitoring 

Periodic monitoring, also called intermittent, epoch-

wise, or campaign-based monitoring, uses 

scheduled observations instead of continuous data 

collection. This method is inexpensive and is widely 

applied for long-term slope stability assessment and 

monitoring of slow-moving landslides. The most 

common periodic monitoring is UAV-based 

photogrammetry, which takes high-resolution 

images at regular intervals to produce Digital 

Elevation Models (DEMs). UAVs are flexible, 

economical, and offer wide area coverage, an ideal 

solution for monitoring inaccessible or hazardous 

terrain. Moreover, there are many types of UAVs 

designed for specific conditions and tasks (Sun et 

al., 2024). However, UAV surveys are weather-

dependent and require precise ground control 

points. Furthermore, the accuracy of the point cloud 

produced by the UAV’s image is not as dense as that 

of the laser scanner point cloud. 

Another common periodic method is 

Interferometric Synthetic Aperture Radar (InSAR), 

which is based on satellite-based remote sensing of 

ground deformation. InSAR allows large-scale 

monitoring and precise millimeter-level 

displacement measurements over long periods. 

However, its limits include lower temporal 

resolution than real-time methods and atmospheric 

distortion susceptibility. Also, Airborne LiDAR 

provides high-resolution topographic mapping for 

landslide-prone areas. Like TLS, which requires a 

ground-based setup, Airborne LiDAR can cover 

large areas. The cost of airborne LiDAR surveys 

remains a limitation, and data processing requires 

specialist skills. 

Using GNSS and TLS is also commented on in 

periodic monitoring. There are several research 

using TLS for capturing the point cloud from the 

area with the purpose of periodic deformation 

monitoring such as (Zahs et al., 2022; Raffl, L et al., 

2024) 

3 Methods and Materials 

This study employs a laboratory data set and a real-

time featured-based method. Section 3.1 provides 

an overview of the study areas, while Section 3.2 

details the method used for landslide identification. 

3.1 Study area 

In this research, we utilize a dataset that was created 

in a laboratory setting with the primary objective of 

placing multiple targets to measure all deformations 

using a total station simultaneously with our 

proposed method by using a laser scanner. This 

controlled environment allows for a comprehensive 

evaluation of the method's accuracy.  
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We applied several deformations in various 

directions to test their robustness further and create 

a challenging scenario. This dataset utilized a box 

of 1 meter by 1 meter, including tiny stones. We 

implemented deformation on the dataset by 

positioning many plastic planes beneath the layer of 

soil. Figure 1 illustrates four planes, each designed 

to apply different types of deformation (in direction 

and magnitude).  

 

Figure 1: Locations of plastic planes under the soil 

Multiple targets were positioned on the soil surface 

to accurately measure deformation in each area 

utilizing a total station (Leica Nova MS60). The 

Leica ScanStation P50 laser scanner was utilized to 

scan the dataset at every epoch. Figure 2 shows how 

we set the total station and laser scanner in front of 

our data set. A total of 20 epochs were recorded 

from this dataset, with deformations implemented 

and measurements acquired throughout each epoch 

utilizing both the total station and the laser scanner. 

 

Figure 2: Location of MS60, P50 and lab setting  

This dataset serves two primary purposes: it enables 

us to assess deformations utilizing our methodology 

with the laser scanner's point cloud, and 

subsequently, we can evaluate our findings with the 

control point deformations recorded by the Leica 

Nova MS60. This data set enables us to assess the 

method's accuracy under laboratory conditions. 

Secondly, there were no registration complications 

since the Leica ScanStation P50 laser scanner and 

the Leica Nova MS60 were stable throughout the 

procedure. We employed several targets in the 

laboratory to guarantee the accurate alignment of 

the coordinate systems of the total station and the 

laser scanner. 

3.2 Methodology 

This work concentrated on enhancing feature-based 

approaches for monitoring landslides in relation to 

temporal changes in the area using time series data. 

The prior feature-based methodologies, although 

practical, were not intended for real-time processing 

and necessitated considerable computational 

resources and time (Hosseini et al., 2023). Our 

novel methodology mitigates these constraints by 

implementing a more efficient and prompt strategy 

for real-time applications. Figure 3 briefly shows 

the flowchart of this method. 

 

Figure 3: Flowchart of proposed workflow 

3.2.1 Preprocessing and Contour Lines 

This step includes registration, contour lines, and 

extracting the region of interest. In the first step, we 

must register two epochs of the point cloud before 

going to the next steps. The main reason for this is 

that if the same feature is extracted from both 

epochs and there is no deformation at that area, this 

feature should have exactly the same coordinates in 

these two epochs. So whenever there is a difference 

in the coordinate of one feature in two epochs, we 

consider that deformation.  
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Afterward, the next step is extracting the contour 

lines. Contour lines run between points of equal 

elevation on a terrain surface and are used for 

topographic mapping and deformation analysis. 

Herein, contour lines were mathematically derived 

from elevation values from a digital elevation model 

(DEM) via grid-based interpolation to derive 

contour positions. Linear interpolation between grid 

cells was performed to obtain contour locations at 

predefined elevation intervals for terrain 

representation. The utilization of contour lines is 

crucial for narrowing the search region in feature 

extraction algorithms, as the feature extraction and 

matching operations represent the most time-

intensive elements of the algorithm. During this 

step, contour lines are generated from the point 

clouds.  

One of the key points in this step would be the 

distance between producing contour lines. The 

smaller the distance between contour lines, the 

smaller the scale of deformation that they can 

detect. In the absence of deformation, the contour 

lines from the two epochs should match. 

Consequently, any inconsistency among identical 

contour lines over epochs signifies deformation in 

that area. These deformed areas will be extracted 

and used for the feature extraction step. By using 

them, we won't extract features from the whole area, 

increasing the method's efficiency for real-time 

purposes. 

3.2.2 Producing Hillshades 

Once the area of interest is determined, a Digital 

Elevation Model (DEM) is taken from the point 

cloud. The accuracy of this DEM, which increases 

with the point cloud density, enhances the precision 

of the feature height obtained from this DEM. This 

will also increase the resolution of the generated 

hillshade, so the 2D coordinates of features taken 

out of it are more exact. By imitating exactly how 

sunshine casts shadows across the ground, the 

hillshade model utilizes the DEM to visually 

illustrate the topography as shaded relief pictures, 

showcasing the topographic attributes (Horn et al., 

1981).  

In this particular procedure, illumination values for 

every cell of the DEM are computed taking into 

consideration the observer perspective and the 

incident light angle. The sun generally changes at 

the azimuth and height (horizontal angle) so that 

most landscape features can be seen. Both 

parameters were selected for this dataset to get the 

best results during the feature extraction stage. 

3.2.3 Feature extraction and matching  

The scale-invariant feature transform (Lowe, et al., 

2004) and nonlinear scale space keypoint detection 

and Description (Alcantarilla, et al., 2012) feature 

extraction methods are then used to extract features 

from the hillshades. Both methods can be used to 

extract features from the data. However, KAZE 

produces more features than SIFT, which is why it 

was used in this study.  

It's crucial to remember that more features do not 

always mean better quality. Excessive feature 

extraction may result in a significant correlation 

between them and reduce computing efficiency. 

The size and roughness of the research region are 

two of the many variables that influence the 

selection of an appropriate feature extraction 

algorithm. Notably, the precision and dispersion of 

the results are greatly influenced by the texture of 

the area. The features that were retrieved from the 

preceding part are then matched using SIFT.  

The 2D features are then brought back into 3D space 

by extracting appropriate height values for the 

matched features in the first and second epochs from 

the digital terrain models. The displacement values 

of characteristic object points can be ascertained at 

this step. 

Notably, a certain proportion of the matches are 

inaccurate; that is, a false match joins two features 

that do not correspond to the same spot on the 

surface of the object. These inaccurate matches may 

affect the results' qualitative and quantitative 

interpretation. Therefore, in order to solve this 

problem, we will use Histogram analyses (Hosseini 

et al., 2023) to remove outliers. 

4 Results 

The approach is applied to the laboratory data set in 

this part. The existence of control points and 

controlled settings for the laboratory dataset allows 

for a clearer evaluation of various algorithmic 

components. By comparing the detected 

deformations with the known locations of the 

control points, these conditions also enable us to 

verify the accuracy of the approach. This aids in 

verifying the method's effectiveness in a controlled 

setting. 

4.1 Registration and contour lines 

Given that all 20 epochs were recorded under 

controlled laboratory settings and the positions of 
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both the laser scanner and the dataset remained 

constant, all epochs were aligned with one another. 

This guarantees that the method's precision may be 

assessed without the impact of registration errors. 

The fundamental purpose of utilizing the laboratory 

dataset is to eradicate registration errors from the 

study. In this configuration, contour lines were 

placed on the dataset for each epoch pair to mark the 

deformed and stable regions (Figure 4), establishing 

the foundation for the subsequent feature extraction 

phase. 

 

Figure 4: The stable area identified by contour lines  

4.2 Feature Extraction and Matching 

Following the generation of the DEM and hillshade 

from the point clouds, as detailed in the 

methodology section, the KAZE feature extraction 

method was implemented on this dataset. Although 

the total number of features covers all of the areas 

for this study, the distribution of features in certain 

areas was below average. Figure 5 depicts the 

location where features were obtained and matched 

after outlier removal by histogram analysis during 

two consecutive epochs. The movement of these 

features from one epoch to the next can show us the 

direction and magnitude of deformation in each 

area. 

 

4.3 Evaluation of accuracy 

In this section, control points located on the dataset 

will be used to evaluate the method's accuracy. 

These control points are measured in each epoch 

after applying deformation independently using 

Leica Nova MS60. For this purpose, a 20 mm by 20 

mm area around each control point was selected. 

Features within these areas were then extracted 

(Figure 6). Subsequently, the movement of these 

features between each pair of epochs was compared 

to the movement of the corresponding control point 

located in the same area. Given the small size of the 

selected area, it is expected that the average 

movement of each group of features will closely 

match that of the adjacent control point. 

 
Figure 5: Distribution of features on the hillshade 

of the laboratory data set 

 

 
Figure 6: Control points (red) and extracted 

features in their neighborhood (blue) 

 

The comparison of the average deformation of 

features with the deformation of each control point 

reveals that the difference between them is under 1 

mm each epoch. Moreover, overall differences 

across 20 epochs do not surpass 2 mm for any 

control point. Figure 7 delineates the discrepancies 

between the deformation seen at control point  7 and 

those computed from their neighboring features. 

 

5 Discussion and Conclusion 

The results show that the proposed real-time 

landslide monitoring method can detect 



6th Joint International Symposium on Deformation Monitoring (JISDM) 7.-9. April 2025, Karlsruhe, Germany 

6 

 

deformations with sub-millimeter accuracy under 

controlled conditions. The approach uses contour 

line clustering and feature tracking to isolate 

deformed areas with minimum computational load 

for real-time applications. 

 
Figure 7: Detected deformation by using control 

point and neighboring features 

Its main advantage is that feature extraction is 

performed only on deformed regions instead of on 

the whole dataset. Traditional approaches, such as 

M3C2-based methods, are computationally 

intensive because point clouds are large. Our 

method lowers processing time but maintains high 

accuracy and is suitable for rapid landslide 

monitoring and early warning systems. 

All these advances bring challenges, though. 

Surface texture variations affect feature extraction 

and matching accuracy and result in uneven feature 

distribution in some locations. KAZE feature 

extraction yields sufficient features, but distribution 

may be a limitation in more complex natural 

environments. Optimal feature selection to achieve 

uniform coverage across the dataset is another 

improvement. 

Another limitation lies in the dependence on 

controlled laboratory conditions where external 

factors like weather conditions, lighting variations, 

and sensor misalignment are not present. Although 

this approach performed well in a static setup, 

further research could test the approach under real 

field conditions to assess its robustness against 

environmental uncertainties. Furthermore, although 

histogram analysis can remove false matches 

completely, further refinement of this filtering via 

machine learning-based outlier detection could 

improve reliability, especially in more complex 

terrains. 

Overall, this study offers a promising real-time 

landslide monitoring approach balancing 

computational efficiency and accuracy. Work 

should continue on field validation, automation 

enhancements, and integration with other sensing 

technologies like GNSS and UAV-based 

photogrammetry for further spatial and temporal 

coverage. 
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