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Abstract 

High-end Terrestrial Laser Scanners (TLSs) are used for many applications that require precise 
geometry of the captured object. Dimensions are frequently extracted directly from the point cloud 
or from estimated primitives. However, the uncertainty information attributed to each point and 
correlations between points are often neglected. Generally, TLS observations may be highly 
correlated for reasons such as similarities in the surface properties, instrument optical-mechanical 
misalignments, overlap of laser footprints, or similarities in the measurement environment. The 
current contribution demonstrates the relevance of correlations in tasks usually performed directly 
with the point cloud, such as distance measurements between two points, target segmentation based 
on point clouds (e.g., spheres), and registration. Tests were conducted using the variance-covariance 
propagation law and elementary error theory for simple distance measurements between highly 
correlated points (e.g., ρ=0.8). Firstly, simulation results are used to show that precision estimations 
for measured distances are up to 55% better with correlations than without. The same analysis is 
done with real data, and an improvement of the precision estimate of 20% was reached; however, 
degradation is also possible if negative correlations occur. Additionally, the impact of correlations 
on the sphere-based registration between two TLS station points is shown. The spheres were 
segmented, and center coordinates were estimated using different versions of a stochastic model. 
Finally, they were used in the registration. Conclusions about correlations in TLS point clouds are 
drawn based on these tasks encountered in almost all TLS applications. 
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1 Introduction  

Point clouds acquired with Terrestrial Laser 

Scanners (TLSs) have become ubiquitous for many 

surveying tasks. Laser scanners have reached a 

development state that allows high acquisition rates, 

such as more than 2 million points per second with 

millimeter accuracy (Wieser et al., 2019). In most 

cases, the uncertainty information of the point cloud 

is not asserted by the user because the topic is 

complex and depends on factors such as the 

instruments’ technical specifications, the scanner’s 

position relative to the scanned object, the object’s 

surface radiometric properties, and in some cases, 

the local environment conditions (cf. Kerekes, 

2023). However, in tasks that require accurate 

geometric dimensioning of the captured object, 

questions about the uncertainty of the 

measurements are usually the first that the 

beneficiaries pose. Moreover, if the uncertainty 

information is used for geometric segmentation, it 

may influence the results of the respective 

segmented primitive. Another common task for 

TLS point clouds is the registration of multiple 

station points. Whether target-based or feature-

based, computing the position of consecutive TLS 

station points translates into computing a 3D 

transformation. To the author's best knowledge, 

uncertainty information about the targets and 

features is not used in commercially available 

software for the transformation, but only in science. 

The current contribution aims to analyze the effects 

of variance-covariance propagation, with focus on 

correlations in the following TLS applications: 

1. Distance measurements between two points 

2. Estimation of geometric primitives 

3. Target-based registration between two station 

points 
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It can be demonstrated that in each case, the role of 

correlations is mostly underestimated, and efforts 

should be made to determine them despite the 

current technical limitations for huge point clouds. 

2 Sources of TLS correlations 

2.1 Literature review 

Although progress has been made in defining a 

stochastic model for TLS (cf. Gordon, 2008; 

Wujanz et al., 2017; Kerekes, 2023; Jost, 2023), 

research is still needed to fully describe the 

uncertainty budget of point clouds and the effects of 

these uncertainties on the outcomes. Furthermore, if 

measurements are influenced by the same sources, 

such as similar surface properties, or emerge from 

the same sources (e.g., laser scanner), it is assumed 

that they are correlated with each other. The topic is 

not new for geodetic measurements (cf. Gotthardt, 

1960; Heunecke, 2004) but has not been fully 

studied specifically for TLS measurements. Only a 

relatively reduced number of publications deal with 

TLS correlations up to date (Koch, 2008; Alkhatib 

et al., 2009; Lichti, 2010; Kauker et al., 2017; Jurek 

et al., 2017; Kermarrec & Lösler, 2020; Schmitz et 

al., 2021; Kerekes et al., 2022), most of which are 

for complex tasks encountered in the scientific 

community. From the above-mentioned 

publications, it can be concluded that correlations 

are derived from the following main sources: 

 instrument optical-mechanical misalignments; 

 similarities in the surface properties; 

 overlapping of laser footprints; 

 similarities in the measurement environment. 

Independent of how the correlations are computed, 

whether empirically or synthetically, the complete 

stochastic model can be described in the general 

form of a variance-covariance matrix (eq. 1). 
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(1) 

2.2 The origin of correlations in EEM 

In the current paper, correlations are computed from 

fully populated variance-covariance matrices 

(VCMs) that are either generated based on the 

variance-covariance propagation law (VCPL) and 

elementary error model (EEM), as described in 

Kerekes (2023) or generated based on given 

correlation coefficients between pairs of 

coordinates of two points. Only random deviations 

are addressed here, and the assumption is that they 

are normally distributed; therefore, applying the 

VCPL is eligible. Note that in this contribution, the 

term correlations may refer to mathematical 

correlations resulting from the functional relation 

between observations or to physical correlations 

resulting from external influences (e.g., same 

surface properties). The origin of correlations in this 

case are, on one side, the instrumental errors in the 

functional correlating group and the errors for the 

object surface properties. Other types of errors, such 

as non-correlating errors, do not lead to correlations 

and the atmospheric influences are neglected for the 

laboratory conditions. Numeric values in the VCMs 

generated by the EEM are values obtained 

empirically and verified in the authors' previous 

publications. It is strongly recommended to consult 

these publications for an in depth understanding of 

the EEM. 

The novelty in the current paper compared to 

previous work (Kerekes, 2023; Kerekes & 

Schwieger, 2024) is that the errors for object surface 

properties are now modeled as functional 

correlating, and the VCM for reflectivity is not 

generalized for a single surface (e.g., arch dam or 

façade plate).  

A detailed explanation is given for obtaining 

 𝚺𝜸𝜸−ref, the VCM due to object surface properties. 

The main diagonal of 𝚺𝜸𝜸−ref is available based on 

the polynomial function that gives the standard 

deviation of each measured range as a function of 

reflectance and range (cf. Kerekes & Schwieger, 

2024, tab. 3). In order to describe the similarities, 

and implicitly the correlations, between the effects 

on the ranges, an additional correlation matrix 𝐑 is 

necessary. Note that a correlation matrix is 

independent of the absolute values of the VCM from 

which it has been derived. In the current case, the 

challenge is to firstly define a correlation matrix and 

afterwards use the correlations to obtain the 

covariances in 𝚺𝜸𝜸−ref, since the main diagonal is 

already available. The workflow is presented in 

figure 1. 
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Given the attribute reflectance for all  𝑛 points (Fig. 

1-1), differences between all pairs of attributes can 

be computed (Fig. 1-2). This results in a number 𝐶2
𝑛  

of unique pairs of differences for the respective 

attribute. In step three (Fig. 1-3), the values are 

normalized according to the principle highest 

difference leads to lowest correlation 𝜌 = 0  and 

lowest difference means highest similarity and 

thereafter highest correlation 𝜌 = 1. Values in 

between are interpolated. In the case of reflectance, 

values can theoretically vary from 0% to 100%. The 

largest difference is 100% in this case, and the 

smallest is 0% (e.g., two points have the same 

values for reflectance). The same approach can be 

applied for other influencing factors, such as the 

measured ranges in this case. For each of the 

computed differences, the point index from step 1 

(Fig. 1-1) is known, therefore the correlation 

coefficients for each pair 𝑖 − 𝑗 is introduced in 𝐑 at 

position (𝑖, 𝑗). If several sources of correlation need 

to be combined, like in the current case (e.g. 

reflectance and range), the needed correlation 

matrix is obtained as the Hadamard product 

(element-wise product) 𝐑 = 𝑹𝟏 ⨀ 𝑹𝟐.  Finally, 

using the main diagonal of 𝚺𝜸𝜸−ref together with 

correlations coefficients from 𝐑, the covariances in 

𝚺𝜸𝜸−ref are computed (Fig. 1-4). 

Although simple, the validity of this approach is 

shown later by introducing the resulting correlations 

in the sphere estimation. 

3 Relevance of correlations in 

common tasks with point clouds 

3.1 Distance between two points 

Tools for measuring distances directly between two 

points in the point cloud are available in most of the 

software that deal with point clouds. In these 

software it is possible to obtain dimensions between 

manually selected points. However, none of them 

indicate the precision of the respective distance 

measurements. This is possible only if a stochastic 

model of the respective point cloud is available. 

Even if the user propagates the uncertainty as given 

by the manufacturer (cf. Lipkowski & Mettenleiter, 

2019) and defines a simplistic stochastic model, the 

correlations between the points are not considered. 

The examples presented here highlight the 

differences in the uncertainty estimations for simple 

Euclidian distances 𝐷𝑖𝑗 (eq. not given here) between 

pairs of points, with and without correlations 

defined at different levels. Using the VCPL on the 

equation for 𝐷𝑖𝑗 results in a precision estimate of the 

respective distance (eq. 2). The differences occur 

based on how the matrix 𝜮𝒍𝒍𝒙𝒚𝒛
 is populated (diagonal 

matrix or fully populated matrix). The matrix 𝑭 is 

the Jacobian matrix for the functional model of 𝐷𝑖𝑗. 

𝜎𝐷𝑖𝑗
= √𝑭 ∙ 𝜮𝒍𝒍𝒙𝒚𝒛

∙ 𝑭𝑇 (2) 

According to the nature of TLS measurements, it is 

impossible to cover all the scenarios encountered in 

reality and generalize the outcomes for uncertainty 

propagation. The numeric values in 𝑭 strongly 

depend on the position of the chosen points and the 

definition of the 3D coordinate system. 

To exemplify the impact of correlations in simple 

distance measurements, a point cloud of a room was 

captured using static laser scanning with the Leica 

HDS7000 (Leica Geosystems AG, 2011). The 

scanning resolution was set to “high”, 

corresponding to 40 mgon angular increments in 

both horizontal and vertical directions.  This scanner 

was used because the stochastic model was studied 

intensively in recent years, and the authors have 

empirical values for the different error groups of the 

EEM. Any other point cloud could have been used 

to extract points in the simulation and real data case. 

 
Figure 2. Example point cloud and examined 

distances 

 
Figure 1. Workflow for deriving correlations 
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The five points are typical points that a user would 

choose for the room’s dimensions (Fig. 2). 

Distances D1 between points 1 – 2 is the room’s 

width, D2 between points 2 – 3 is the room’s length, 

and D3 between points 4 – 5 is the room’s height. 

First, different correlation coefficient values are 

simulated for the coordinates of points 1 to 5. The 

standard deviations of the point’s coordinates are all 

set to an equal level of 𝜎𝑥𝑖
= 𝜎𝑦𝑖

= 𝜎𝑧𝑖
= 5 𝑚𝑚. 

Afterward, the covariances between different pairs 

of coordinates (called cases in Table 1) are 

computed based on the simulated level of 

correlation 𝜌, also known as the Pearson correlation 

coefficient. The levels are chosen with a 

discretization of 0.2, and the combinations are xyz -

all coordinates correlated, xy – only plane 

coordinates are correlated, and zz – only height 

coordinates are correlated. Other combinations are 

also possible, but only these are presented due to 

limited space. 

Table 1. Differences in precision estimates for 

distances with simulated correlation coefficients 

 

Only the results for the standard deviations 

according to eq. 2 are shown here. If no correlations 

are considered, the standard deviations for all three 

distances remain the same, 7.1 mm. For all other 

cases with correlations, the numeric values are 

given in the column “corr,” besides the 

improvement in % relative to the “no corr” case. For 

all cases, if the coordinates used for D1, D2 and D3, 

are functionally dependent (𝜌 = 1), eq. 2 yields 0; 

therefore, this case is not studied. If the correlation 

level decreases by only 0.2, the resulting standard 

deviation is 55% smaller for all distances in the case 

xyz. Afterwards, it decreases proportionally.  

In the case of xy (only plane coordinates), 

differences between the no correlations and 

correlations values are seen only for D1 and D2. 

This is due to their position in space, mainly in the 

xy plane. For D3, almost no difference (1% or 0%) 

is seen, a fact that is expected according to the 

functional model for points with almost identical xy 

coordinates. The last case, zz, shows what should be 

expected if only the point’s heights are correlated. 

The variances of distances that are approximately 

on the same plane (D1 and D2) do not change if only 

their z coordinates are correlated. However, in D3, 

the room height shows changes between both 

scenarios. The highest correlation level leads to a 

55% smaller standard deviation, and the lowest 

level of 0.2 still improves the value with 11%. A 

similar study was done for GNSS measurements by 

Kermarrec & Schön (2017).  

Table 2. Differences in precision estimates for 

distances with EEM correlation coefficients 

Case ρ 
𝝈𝑫𝟏(1-2) [mm] 

no corr corr ∆ [%] 

xx 0.44 

1.487 1.193 20% yy 0.40 

zz 0.35 
 𝝈𝑫𝟐 (2-3) [mm] 

xx -0.25 

1.400 1.741 -24% yy 0.21 

zz 0.37 
 𝝈𝑫𝟑 (4-5) [mm] 

xx 0.19 

0.920 0.928 -1% yy -0.02 

zz 0.02 

 𝝈𝑫𝒔 (1-3) [mm] 

xx -0.33 

1.199 1.388 -16% yy -0.01 

zz 0.37 

Up to now, this is only a theoretical case. In order to 

verify the resulting values with real variances and 

covariances, the EEM and VCPL were used to 

establish a synthetic variance-covariance matrix 

(SVCM) for the same five points, and a similar 

analysis was performed. This time, the correlation 

coefficients are extracted from the resulting matrix, 

and the differences are presented in Table 2. Note 

that the used values for variances and covariances in 

the EEM are based on empirically verified past 

studies (e.g., Raschhofer et al., 2021; Kerekes & 

Schwieger, 2024). In Raschhofer et al., (2021), the 

non-correlating errors of the Leica HDS7000 were 

studied using reference B-Spline test objects and 

values for the angular measurement noise and range 

noise were empirically obtained. In the same paper, 

the role of further instrumental errors in the 

functional correlating group was explained. In 

Kerekes & Schwieger (2024), an approach was 

described for obtaining the standard deviations for 

distance measurements based on a manufacturer-

defined function according to the reflectance of the 

scanned surface and distances. The reflectance 

Case ρ 

𝝈𝑫𝟏 [mm] 
∆ 

[%] 

𝝈𝑫𝟐 

[mm] ∆ 

[%] 

𝝈𝑫𝟑 
[mm] ∆ 

[%] no 

corr 
corr corr corr 

xyz 

0.8 

7.1 

3.2 55% 3.2 55% 3.2 55% 

0.6 4.5 37% 4.5 37% 4.5 37% 

0.4 5.5 23% 5.5 23% 5.5 23% 

0.2 6.3 11% 6.3 11% 6.3 11% 

xy 

0.8 3.2 55% 3.2 55% 7.0 1% 

0.6 4.5 37% 4.5 37% 7.0 1% 

0.4 5.5 23% 5.5 23% 7.1 0% 

0.2 6.3 11% 6.3 11% 7.1 0% 

zz 

0.8 

7.1 0% 7.1 0% 

3.2 55% 

0.6 4.5 37% 

0.4 5.5 23% 

0.2 6.3 11% 
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values of the scanned room presented in figure 2 are 

retrieved from another scan using the calibrated 

reflectance measured with a Riegl VZ2000 scanner. 

Opposed to how correlations were defined in the 

previous paper, in the current one, they are obtained 

using the novelty presented in section 2. 

The variances and covariances strongly depend on 

the position of the five points relative to the scanner. 

On one side, some of the EEM error groups have a 

proportional effect on the resulting variances (e.g., 

non-correlating group), whereas, for others, the 

correlation level depends on their position (e.g., 

above the scanner horizon) and the object surface 

properties (e.g., high vs. low reflectance). Although 

the absolute value of the standard deviations is low 

in these cases (under 2 mm), the reader should focus 

on the relative change when correlations are 

considered. 

For D1, an improvement of the standard deviation 

of 20% is seen, and only positive correlation 

coefficients exist between the coordinates. This 

agrees with the simulated case for a correlation level 

of around 0.4. An interesting finding is realized for 

D2. Due to a negative correlation coefficient in the 

x direction, the case with correlations is 24% worse 

than the case without correlations. This 

phenomenon necessitated further inspection; 

therefore, a supplementary distance Ds situated in 

the same plane (ceiling) with D2 was considered. 

Also in this case, negative correlations coefficients 

were obtained in the x plane. A decay of the 

precision estimate with 16% can be seen. These 

effects were analyzed by separating the contributing 

elementary errors in each group (non- correlating, 

functional correlating instrumental errors and, 

functional correlating group with object surface 

properties). Single VCM were computed and the 

correlation level were analyzed separately. For D2 

and Ds the correlations in the x plane with 

functional correlating instrumental errors only are 

0.54 and 0.03. Interestingly for the same 

combinations, strong negative correlations in the y 

plane are seen (-0.64 and -0.96) and strong positive 

ones in the z plane (0.97 and 0.98). Adding the non-

correlating errors (only main diagonal), reduces the 

correlations in the x plane to 0.04 and 0, practically 

making the points uncorrelated. Finally, with the 

object properties group they become negative and 

reach the values shown in table 2. This is traced 

back to the influences of the scanning geometry 

(angle of incidence and measured range) of these 

points. 

For the room height, D3, almost no difference is 

seen besides a slight change in µm level, which may 

be considered insignificant. This also corresponds 

to the simulated scenario where no change is 

observed if only plane coordinates (here x) are 

correlated. 

In addition to these five points, another four were 

chosen. They are all scanned points on a 1x1 m 

reference reflectance plate (SphereOptics) with 

different reflectance properties that are very well 

known (e.g., 20%, 50%, 80%). They are depicted in 

numbers 6 to 9 to differentiate them from the 

previous ones. The plate’s position relative to the 

scanner is seen in Figure 2 and depicted by the blue 

square. The position of the four points is shown in 

Figure 3. 

Points 6 and 7 show 20% reflectance, and 8 and 9 

are on the part with 80%. From the point of view of 

surface reflectance, D4 and D5 are from points that 

are relatively highly correlated with each other, 

whereas D6 is not correlated based on reflectance. 

Table 3. Differences in precision estimates for 

distances on reflectance plate  

Case ρ 
𝝈𝑫𝟒 (6-7) [mm] 

no corr corr ∆ [%] 

xx 0.53 

0.787 0.624 21% yy 0.63 

zz 0.36 

  𝝈𝑫𝟓 (8-9) [mm] 

xx 0.30 

0.785 0.633 19% yy 0.40 

zz 0.34 

  𝝈𝑫𝟔 (6-9) [mm] 

xx 0.08 

0.837 0.638 19% yy 0.04 

zz 0.33 

 

In all three cases (Table 3), a difference of around 

20% is observed, showing an improvement of the 

distance computed uncertainty with correlations. 

Although the effects are less obvious than in the 

previous case, some coordinates are more 

correlated. The height of all three cases remains at a 

 
Figure 3. Points on SphereOptics reflectance 

plate 
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constant level of around 0.3. Note that the plate was 

placed vertically against the wall. Therefore, the 

standard deviation obtained for this level of 

correlation is in concordance with the one obtained 

for D3 in the simulated scenario, where points are at 

different heights. Moreover, as in the simulated 

case, the correlations in the plane coordinates x and 

y do not contribute to the change of the standard 

deviation with correlations, even if they are very 

low, 0.04 (for D6) or relatively high 0.63 (for D5). 

Overall, it can be seen that taking correlations into 

consideration is important for tasks such as distance 

measurements extracted from the point cloud, and a 

change of ca. 20% (not only improvements) should 

be expected.  

3.2 Sphere estimation 

TLS targets in spherical forms are used for 

georeferencing or registration in many practical 

applications. The coordinates of the sphere center 

are determined after an adjustment, a procedure that 

mostly happens directly in the TLS proprietary 

software. As an output, the user obtains the sphere’s 

center coordinates but does not always receive 

detailed information about the coordinate’s 

precision for each coordinate. For example, in Leica 

Cyclone (v. 2023.1.0), the user can only evaluate the 

fit quality by a few global indicators, the mean error, 

and a standard deviation. In other commercially 

available software, this information is likewise 

sparse or inexistent. This may be an issue if the 

sphere center coordinates are needed for 

deformation analysis (Yang et al., 2021), where the 

stochastic properties of center coordinates are used 

for statistically based decisions.  

The user may also use the points on the sphere and 

conduct an adjustment independent of the TLS 

software to obtain a measure for uncertainty 

estimation. However, usually, the high number of 

points on the sphere leads to results that are, in most 

cases, too optimistic (cf. Yang et al., 2021). In any 

case, results will be treated as unrealistic. This 

phenomenon is due to the inconsideration of an 

appropriate stochastic model in the adjustment. 

In order to prove the effects of including 

correlations in the estimation of a sphere’s center 

coordinates, examples are given with scanned TLS 

spheres in laboratory conditions. These are 14 cm 

diameter TLS spheres that will be used later for the 

registration of two TLS point clouds. The spheres 

were scanned from distances varying from 3.2 m to 

9.4 m. Each sphere was manually segmented, and 

systematic effects caused by mixed pixels were 

manually deleted. In some cases, an interesting 

phenomenon was observed for points where the 

TLS intensity was maximum in the middle of the 

sphere surface. Distances were falsified, and the 

points were obviously outside of the sphere’s 

surface. These points are likewise treated as outliers 

and eliminated from the sphere adjustment. All 

spheres were scanned from two TLS station points.  

The relative position is depicted in a point cloud in 

Fig. 4. For all spheres, the reflectance information 

is retrieved from a point cloud captured with the 

Riegl VZ2000. The conversion from dB to % is 

done as in Kerekes & Schwieger (2024). 

Niemeier (2008) gives the theoretical background 

for the Gauß-Helmert-Model (GHM) used to 

estimate the center coordinates of points observed 

on a circle, whilst the same model is presented for a 

sphere in Jäger et al. (2005).  

The focus is set on the role of correlations from the 

SVCM in the GHM adjustment. The analysis is 

done with two different versions of the same 

SVCM. The difference is as follows: 

 𝛴𝑙𝑙 = 𝐷 is the main diagonal of the SVCM; 

 𝛴𝑙𝑙 = 𝑆𝑉𝐶𝑀 is the fully populated SVCM. 

Comparing these stochastic models shows the 

influence of the correlations on the adjusted 

coordinates of the sphere center points and their 

corresponding uncertainties.  

The SVCM used in this adjustment is established 

with values from past experiences, as shown in 

section 3.1. together with the new approach for 

defining correlations mentioned in section 2.2. 

In Table 4, the results are shown for the standard 

deviations of the estimated center coordinates, and 

finally, the square root 𝑠̂0 of the a posteriori variance 

factor 𝑠̂0
2 as a global indicator for the adjustment. 

The assumed a priori variance factor of 𝜎0
2 = 1 

(dimensionless) is used in common cases. 

The first important finding is that the difference in 

the estimated values of the sphere center 

coordinates in all cases is not noticeable (µm level) 

and therefore not shown here.  

 
Figure 4. Position of TLS spheres and station 

points 
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Table 4. Sphere estimation results  

 

The standard deviations are in the sub-mm level. 

Using the SVCM main diagonal compared to the 

fully populated SVCM leads in all cases to smaller 

standard deviations. If correlations are considered, 

there are cases where they are 10 times larger (e.g., 

T1_K3, or in some cases, the differences are 

relatively small (e.g., T1_K2 in y direction) of a few 

µm.  Even if they may be irrelevant for some TLS 

tasks, these kinds of changes make a difference in 

the decisions of deformation analysis, as 

demonstrated by Yang et al. (2021).  

Next, the more relevant parameter 𝑠̂0 for the 

complete adjustment, is analyzed. A change is 

observed in all estimations.  In practice, the closer it 

approaches the value 1 (a-priori level), it can be 

affirmed that the functional model is valid, the 

stochastic model is appropriate, and no outliers exist 

(cf. Niemeier, 2008). If the level of variance and 

covariances are chosen too optimistic, then 𝑠̂0 > 1, 

and if they are too pessimistic  𝑠̂0 < 1 (Heunecke et 

al., 2013). Acceptance intervals for the global test 

generally considered in geodesy for adjustments are 

between [0.7 … 1.3] (cf. Möser et al., 2012), 

although the upper and lower acceptance boundaries 

can be rigorously obtained from the critical values 

of the F-distribution function or normalized 𝜒2 

distribution based on the degrees of freedom (cf. 

Jäger et al., 2006; Niemeier, 2008). 

By using the identity matrix 𝑷 = 𝑰 (not shown in the 

table), 𝑠̂0 does not approach the value of 1, and in all 

cases, it is a too pessimistic approach. In cases 

depicted by 𝛴𝑙𝑙 = 𝐷 for brevity, observations are 

weighted according to the diagonal SVCM, which, 

in some isolated cases, is also an appropriate 

stochastic model (e.g., T2_K3). However, using 

only the main diagonal is a slightly too pessimistic 

choice for sphere estimation.  

Finally, the fully populated matrix 𝛴𝑙𝑙 = 𝑆𝑉𝐶𝑀 

offers the overall best results for four out of six  

 

 

spheres, for which the global test is fulfilled. 

Noteworthy is that for the second station point (K3), 

the test is passed for all three spheres. Whereas, for 

K2, the two exceptions, T1_K2 and T3_K2, do not 

fulfill the test. One value is slightly below, and one 

is slightly above the acceptance interval. Although 

all outliers were eliminated iteratively based on a 

simple 2σ rule, 𝑠̂0 did not improve. The reasons 

remain unclear at the moment. 

Overall, it can be affirmed that by using the full 

SVCM, the estimation results are more realistic 

compared to the other cases and demonstrate that 

including the spatial correlations is beneficial for 

sphere estimation. The VCMs for the estimated 

coordinates (3x3 matrix) are also used for the 

following analysis in the registration. 

3.3 Registration 

In the setup used for sphere estimation, the 

minimum number of three corresponding points is 

available for each TLS point. To demonstrate the 

effects of correlations in a 4-parameter 

transformation, the open-source software Java 

Applied Geodesy (JAG3D) (Lösler, 2024) was 

used. Along with the three translations, the rotation 

around z is estimated. The other two rotation angles 

are not estimated because the Leica HDS7000 was 

leveled at each station point.  

The coordinates of the sphere’s centers were taken 

directly from Table 4, and the VCM matrixes for the 

spheres in the two cases (diagonal SVCM, 𝛴𝑙𝑙 = 𝐷 

and full SVCM, 𝛴𝑙𝑙 = 𝑆𝑉𝐶𝑀) are introduced in the 

transformation. Note that correlations in the 𝛴𝑙𝑙 =
𝑆𝑉𝐶𝑀 case are computed with the EEM and applied 

with the variances derived in section 3.2. Ideally, 

the correlations should result from a simultaneous 

multiple-sphere GHM adjustment; however, 

obtaining this solution poses a technical challenge 

Target in 

PC 
Stochastic model 𝒔𝒙[𝒎𝒎] 𝒔𝒚[𝒎𝒎] 𝒔𝒛[𝒎𝒎] 𝒔̂𝟎 

Points on 

sphere 

Distance 

scanner 

[m] 

T1_K2 
𝛴𝑙𝑙 = 𝐷 0.065 0.129 0.046 0.56 

374 9.440 
𝛴𝑙𝑙 = 𝑆𝑉𝐶𝑀 0.108 0.143 0.102 0.66 

T2_K2 
𝛴𝑙𝑙 = 𝐷 0.052 0.020 0.017 0.71 

1503 4.865 
𝛴𝑙𝑙 = 𝑆𝑉𝐶𝑀 0.155 0.147 0.146 1.09 

T3_K2 
𝛴𝑙𝑙 = 𝐷 0.033 0.011 0.011 0.67 

2808 3.245 
𝛴𝑙𝑙 = 𝑆𝑉𝐶𝑀 0.161 0.157 0.157 1.43 

T1_K3 
𝛴𝑙𝑙 = 𝐷 0.013 0.024 0.011 0.50 

2448 3.981 
𝛴𝑙𝑙 = 𝑆𝑉𝐶𝑀 0.125 0.127 0.126 0.97 

T2_K3 
𝛴𝑙𝑙 = 𝐷 0.150 0.127 0.071 0.89 

423 8.745 
𝛴𝑙𝑙 = 𝑆𝑉𝐶𝑀 0.211 0.200 0.178 1.25 

T3_K3 
𝛴𝑙𝑙 = 𝐷 0.018 0.051 0.018 0.67 

1395 4.923 
𝛴𝑙𝑙 = 𝑆𝑉𝐶𝑀 0.163 0.175 0.165 1.07 
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in handling the point cloud. Additionally, the case 

with equally weighted coordinates 𝛴𝑙𝑙 = 𝐼 is shown. 

The estimates for the transformation parameters are 

shown together with the corresponding uncertainty.  

Table 5. Transformation parameters with different 

versions of the sphere estimation stochastic model  

Stochastic 

model from 

sphere 

estimation 

Parameter 

Estimated 

value [m] 

or [gon] 

σ [mm] 

or 

[mgon] 

𝛴𝑙𝑙 = 𝐼 

Tx -1.7738 3.4 

Ty 5.2608 3.2 

Tz -0.0136 3.1 

Rot_z 208.17993 35.58 

𝛴𝑙𝑙 = 𝐷 

Tx -1.7786 1.7 

Ty 5.2665 2.1 

Tz -0.0132 1.0 

Rot_z 208.18051 18.6 

𝛴𝑙𝑙 = 𝑆𝑉𝐶𝑀 

Tx -1.7758 2.0 

Ty 5.2615 2.5 

Tz -0.0134 3.1 

Rot_z 208.1553 25.3 

 

In each case, the estimated translation values differ 

in the lower mm level with minor differences. The 

used experimental setup is not designed to compare 

the estimated values against a true value of the 

scanner’s position (e.g., pilar with precisely known 

coordinates). However, this implies exact 

knowledge of the scanner’s local coordinate system 

origin (not 0,0,0 in the point cloud), which is not 

trivial to determine. An approach to validate the 

estimated transformation parameters would be to 

use a calibration room with reference geometric 

shapes, such as a sphere for which each scan covers 

a hemisphere. One could use the points on the 

reference sphere from each station point and see 

which version of the registration leads to the best 

sphere estimation (e.g. by the same approach as in 

section 3.2).  Therefore, judging from how the 

parameters affect the registrations remains a subject 

for further research.  

If the uncertainty parameters of the transformation 

parameters are assessed, it can be seen that by using 

a stochastic model, all values improve compared to 

equally weighted coordinates 𝛴𝑙𝑙 = 𝐼. Using the 

diagonal VCM led to the overall lowest level of 

uncertainty for the translation parameters and 

rotation angle. If the full VCM with correlations 

between the sphere’s centers are considered, the 

results are better than those with the unity matrix; 

however, they are slightly worse than the diagonal 

matrix. It can be affirmed that both versions of the 

SVCM (diagonal and fully populated) introduced in 

the sphere estimation improve the registration 

uncertainty. 

4 Conclusions 

This study focused on the role of correlations in 

different tasks commonly encountered in TLS. It 

was shown that high correlations have an impact on 

the uncertainty estimation of distances between two 

points in the simulated scenario. In a real case, 

improvements of up to 21% were determined, but a 

deterioration of 24% was also identified for 

negatively correlated coordinates.  

In most cases, introducing correlations in a GHM 

adjustment for sphere center coordinates estimation 

proved beneficial for the estimated six spheres. The 

global test for the adjustment was used to verify if 

the derived correlations were realistic. 

In a further analysis, the impact of an appropriate 

stochastic model on the registration of two points 

was shown. It was seen that using the SVCM 

defined with the EEM in the sphere estimation 

reduced the uncertainty of the registered point cloud 

in both cases with and without correlations. 

However, the effects of the transformation 

parameters on the point cloud remain a topic for 

future research. 
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