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Abstract

Internal misalignments in terrestrial laser scanners (TLS) lead to systematic errors in the magnitude of certain
millimeters in their point clouds. For deformation analyses with high accuracy requirements, these geometric
imperfections must be determined to correct the point cloud by calibration. Neglecting proper calibrations
can result in misinterpretations during the deformation analysis, as any systematic errors may be interpreted
as deformation. The manufacturers calibrate the scanners before delivery. Due to aging processes of the scan-
ners and external influences such as temperature, geometric imperfections change over time and recalibration
becomes necessary. This also limits the utility of installed calibration fields for a-priori calibrations. In this
study, we demonstrate a way to calibrate a panoramic-type TLS during a measurement (in-situ) using a con-
crete water dam. Point clouds of the dam from several stations are used to estimate calibration parameters.
The parameters are determined by artificial targets placed in the environment and via distinctive points in the
point cloud itself. The study provides a procedure to estimate calibration parameters at a concrete water dam.
It can be shown that a calibration reduces systematic effects in TLS point clouds. This minimizes the risk of
misinterpreting systematic errors as deformations.
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1 Introduction

Terrestrial laser scanners (TLS) have become a stan-
dard tool in engineering geodesy due to their capa-
bility for large-scale area measurements and surface
capturing. Beyond applications with lower accuracy
demands, TLS are also employed for deformation
monitoring, where data quality is critical.
In addition to random measurement noise, vari-
ous systematic effects can occur, including errors
caused by internal misalignments in TLS. For in-
stance, constructional imperfections or internal me-
chanical changes due to temperature, aging, etc. can
introduce systematic errors in point clouds (Mu-
ralikrishnan, 2021), which may be misinterpreted
as deformations for example in monitoring appli-
cations. To mitigate these effects, TLS calibra-
tion is essential, allowing systematic errors to be
identified and mathematically corrected in the point
cloud. Different functional models describe the
impact of mechanical misalignments on the obser-
vation depending on calibration parameters (CPs)
(Wang et al., 2017; Lichti, 2007). The task of TLS

calibration is to determine these parameters.
For high-precision applications, regular determina-
tion of the CPs is essential to maintain accuracy.
Since these parameters are unstable and vary over
different time scales (Medić et al., 2021), a one-
time calibration by the manufacturer before delivery
is insufficient. While manufacturers offer recalibra-
tion services, users also have the option to determine
and apply calibration values independently. These
values can be obtained either before measurement
(a-priori) or during measurement (in-situ).
Several studies have developed calibration strate-
gies and optimized calibration fields (e.g. Lichti
et al. (2021); Medić et al. (2019b)) to determine the
CPs a-priori, thereby enhancing point cloud quality.
However, for these approaches to be successful, cer-
tain prerequisites must be met: By using classical
TLS targets to determine CPs, a sufficient number
of targets must be available, or an optimized mea-
surement geometry must be ensured (Medić et al.,
2019b). However, meeting these requirements may
sometimes be impractical, especially if access to a
permanently installed calibration field is not possi-
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ble. Additionally, calibration should be conducted
as close as possible to the actual measurement in
both time and location. To address this issue, an
in-situ calibration can be particularly useful. In
this case, data that is already being captured can be
leveraged to derive the CPs.
In this study, we develop and examine two ap-
proaches for implementing in-situ calibration on
water dams. We focus on panoramic TLS:

• We use Two-Face Method to determine CPs
from a single station by comparing front and
back face measurement using keypoints ex-
tracted from the point cloud.

• We enhance the functional model of Two-Face
Method and adding artificial targets in the en-
vironment we include the Network Method to
achrive a combined method. CPs are estimated
via a registration process.

The Two-Face Method from one single station al-
lows only to estimate a subset of CPs, while the
combined approach allows to estimate all of them.
As critical infrastructure, dams require regular de-
formation monitoring to prevent potential failures
and associated risks and catastrophes. TLS are well-
suited for this task, as it enables rapid data acqui-
sition and area-based analyses. However, without
proper calibration, ensuring the quality and reliabil-
ity of the collected data is not possible.
Chapter 2 provides an overview of the theoretical
background of TLS calibration and outlines various
approaches for determining CPs. In Chapter 3 we
describe a measurement setup that enables to apply
described approaches, while chapter 4 presents cali-
bration results. We discuss these results in chapter 5
and finally, chapter 6 concludes the presented work.

2 Material and Methods

In this study, we employ self-calibration methods,
which offer the advantage of not requiring external
reference length of coordinates. Instead, calibration
relies solely on identical targets that are visible
in front and back face scans and potentially from
different stations. These targets can be signalized
using artificial TLS targets or identified through
keypoints. These keypoints must be extracted from
the point clouds and matched to their corresponding
counterparts across different scans. Typically, these
keypoints are less accurate compared to artificial

Table 1. Parameters of geometric error model de-
veloped by NIST. (.)* indicates two-face sensitiv-
ity.

CP Description
x1n, x1z∗ hor.l/vert. beam offset
x2∗ hor. axis offset
x3∗ mirror offset
x4∗ vert. index offset
x5n, x5z∗ hor./vert. beam offset
x6∗ mirror tilt
x7∗ hor. axis tilt
x8x∗,x8y∗ hor. angle encoder eccentricity
x9n∗,x9z vert. angle encoder eccentricity
x10 rangefinder offset
x11a, x11b 2nd order scale error (hor.)
x12a∗, x12b 2nd order scale error (ver.)

targets, but the number of these points is commonly
much higher.

2.1 Impact of Calibration Parameters

TLS are polar measuring systems which measure a
distance r j

i , a horizontal angle ϕ
j

i and a vertical an-
gle θ

j
i for each point i on station j. The cartesian

coordinates can be expressed by spherical coordi-
nate via (Schwarz, 2018)
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We are using the geometric error model developed
by the National Institute of Standards and Technol-
ogy (NIST) (Wang et al., 2017). This model de-
scribes the functional impact of the mechanical mis-
alignments by using a set of 18 CPs described in ta-
ble 1. The table indicates that some CPs are two-
face sensitive. Similar to total stations, resulting
effects in front and back faces cancel each other
out. The functional impacts on the spherical obser-
vations are shown in equations 2 - 4. Here, k = 1 for
front face and k =−1 for back face measurement.

2.2 Two-Face Method

Most high-end laser scanners provide the capability
to perform scans directly in two faces. Since nu-
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merous CPs from table 1 are sensitive to two faces,
they can be determined by computing the difference
of front and back face. This leads to the following
functional model:

fi =

x f
i

y f
i

x f
i

−
xb

i
yb

i
xb

i

= 0 (5)

where (.) f indicate front and (.)b back face mea-
surement. To integrate CPs as parameters into this
model, we are using the spherical representation of
a measured point by integrating the impact of CPs:

r f/b
i = r f/b

i +∆r f/b
i (6)

ϕ
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Equations 6-8 highlight the necessity of accessing
spherical instead of cartesian observations. These
can be derived by inverting equation 1. We estimate
the CPs in a least squares adjustment by using an
iterative Gauß-Helmert Model (Koch (2013)).

2.3 Combination of Two-Face and Net-
work Method

We aim to enhance the Two-Face Method by in-
tegrating it with the Network Method, which esti-
mates CPs as additional parameters in a registration
process (for details see Reshetyuk (2009)). While
both methods establish distinct functional relation-
ships and could theoretically be applied in separate
adjustments, we combine them into a global adjust-
ment to jointly determine all CPs. Here we assume
that measurements from both methods provide in-
dependent observations.

The algorithm for calculating CPs using the Net-
work Method is based on a three-dimensional
Helmert-Transform. Transformation parameters be-
tween a designated reference scan Xre f and at least
one additional scan, which may originate from a dif-
ferent station or face is estimated by using

f j
i = R jX j +T j −Xre f = 0 (9)

where R j denotes the rotation matrix and T j the
translation vector. Analogous to the Two-Face
Method, CPs are incorporated into the functional
model by introducing their impact:

r j
i = r j

i +∆r j
i (10)

ϕ
j

i = ϕ
j

i +∆ϕ
j

i (11)

θ
j

i = θ
j

i +∆θ
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An iterative Gauss-Helmert model is employed to
estimate the CPs (Koch, 2013). Additional param-
eters to be estimated are transformation parameters
and the coordinates of the reference scan Xre f . For
more details see Reshetyuk (2009).
To combine Two-Face and Network Method, we
summarize required vectors and matrices for both
methods. As a result, the observation vector is given
by l̄ =

[
lTnet lT2 f ace

]T
, the covariance matrix of ob-

servations by C̄ll = diag(Cllnet ,Cll2 f ace), the Design-

matrix by Ā =
[
AT

net AT
2 f ace

]T
and the condition

matrix by B̄ = diag(Bnet ,B2 f ace). Here, (.)net de-
scribes the parts of the Network Method and (.)2 f ace

of the Two-Face Method.
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2.4 Feature Detection and Matching

The process of using keypoints instead of artificial
targets involves two steps: first, salient points must
be identified in all scans. This is achieved by detect-
ing prominent points (often called features) using
a feature detector and describing them with a fea-
ture descriptor. In the second step, feature match-
ing is performed to associate identical points based
on their feature descriptors. Various methods exist
to carry out this process; however, we follow the ap-
proach outlined in Medić et al. (2019a), who devel-
oped an approach to estimate CPs using keypoints.
First, each point cloud j is represented as an inten-
sity image and a range image. To achieve this, the
points are converted into spherical coordinates. A
regular grid is generated, where each grid cell cor-
responds to the measured horizontal angle ϕ

j
i along

the horizontal axis and the vertical angle θ
j

i along
the vertical axis. In the intensity image, we assign
each grid cell with the measured intensity value,
while in the range image, we assign each grid cell
with the corresponding distance r j

i .
To detect keypoints in the intensity image, we ap-
plied the Förstner operator (Förstner and Gülch,
1987), which allows for the identification of salient
points at subpixel accuracy along with their associ-
ated covariance matrix. For feature description, we
utilized the BRISK descriptor (Leutenegger et al.,
2011), which serves as the basis for feature match-
ing across all scans.
Each matched keypoint in the intensity image corre-
sponds to a horizontal and vertical angle, which can
be utilized for calibration. The covariance matrix
of these angles is obtained through variance propa-
gation from the covariance matrix computed by the
Förstner operator for the detected keypoint. The
corresponding distance for calibration is extracted
from the range image. To enhance accuracy, we av-
erage all distances within a 5×5 pixel neighborhood
around the keypoint. Outliers are filtered out using
a Median Absolute Deviation (MAD) filter, and the
variance of the averaged distances is used as the fi-
nal distance variance.

3 Experimental Setup

In our experiments, we utilize a water dam with a
crown length of about 200 m and a maximum height
of approximately 25 m. Constructed from quarry
stones, the dam has a correspondingly rough sur-

Figure 1. Overview of the experimental situation
with target positions and used stations.

face. Figure 1 provides an overview of the exper-
imental setup. In total, we have placed 9 artificial
TLS targets in the environment, T1 - T6 are located
on the ground, T7-T9 on the crown. Except for tar-
get T7, BOTA8 targets were used (Janßen et al.,
2019). In contrast, target T7 is a planar target de-
signed for scanning from both sides. Scanners were
positioned at stations S1-S3.
Station S1 is likely well suited for the Two-Face
Method as it is positioned as close as possible to
the dam. This station enables low vertical angles.
This enhances the ability to determine CPs, as the
impact of many mechanical misalignments is par-
ticularly large at low vertical angles (see equations
2- 3). Additionally, the change of faces of this sta-
tion is chosen to be perpendicular to the dam, ensur-
ing that both the front and back faces are captured
within a single scan.
Stations 2 and 3 are well suited for the Network
Method. The targets on the crown result in relatively
small vertical angles, while there are sufficient tar-
gets in the horizon to determine CPs that are inde-
pendent of the vertical angle. Distant targets in both
the horizon and the zenith further improve the de-
termination of the transformation parameters.
For data collection, we used the high-end TLS Z+F
Imager5016. The dam was scanned with a spatial
resolution of 3.1mm@10m and 1.6mm@10m. We
have chosen the lowest quality settings in order to
minimize the influence of the TLS software on the
acquired data.
All scans were performed in front and back face.
Lichti (2010) has shown that in the Network
Method, correlations between the parameters are re-
duced by setting the orientations of both stations
perpendicular. This consideration was applied at
stations S2 and S3.
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Figure 2. M3C2 distances and their distributions of front and back face measurement for a) uncalibrated
point cloud, b) after applying CPs estimated using Two-Face Method and c) after applying CPs estimated
using combined Two-Face and Network Method.

4 Calibration Results

In this chapter we present the impact of TLS cali-
bration on the point cloud.

4.1 Uncalibrated Point Cloud

For evaluation and visualization, we use the point
cloud captured from station S1. A point cloud com-
parison using the M3C2 comparison between front
and back face highlights issues caused by insuffi-
cient calibration, thereby indicating the effective-
ness of the calibration process. This is because
some calibration parameters are sensitive to two
faces (see table 1). To properly assess calibration
through point cloud comparisons, scans from dif-
ferent stations would be necessary. However, this
would primarily reveal effects from the registration
rather than from calibration. The left part of fig-
ure 2a) presents the performed point cloud compar-
ison, where blue indicates negative deviations and
red represents positive deviations. The right part of
the figure displays the histogram of the M3C2 dis-
tances.
The visualization reveals distinct systematic differ-
ences between front and back face. The magni-
tude of systematic deviations are comparable low
the change of faces but become more prominent
towards the edges of the dam. The histogram of

M3C2 distances confirms these systematics. The
distribution function is noticeably skewed in the
positive direction. Table 3 shows the mean value
and the RMS (root mean square error) of the M3C2
distances.

4.2 Calibration using Two-Face Method

As shown in Figure 1, the captured data consists
of many vegetation, which can move between front
and back face measurement due to wind. To avoid
effects, we focused solely on the dam for in-situ
calibration. As explained in section 2.4, intensity
images, range images of both faces were generated
and were detected. The resulting dataset consists
of intensity and range images with a resolution of
7883 x 20269 pix. In front face, 9095 keypoints
were identified, while back face contains 9003 key-
points. With 42% we can match 3886 keypoints
in two faces which can be used as identical points.
Figure 3 presents a section of the intensity image,
highlighting the keypoints detected and success-
fully matched in front and back faces. Keypoints
are evenly distributed across the entire dam, with
a higher concentration of matches near the scan-
ner. However, a sufficient number of matches are
also present throughout the dam, including areas at
the dam’s crown. The spherical coordinates derived
from the intensity and range image (see section 2.4)
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Figure 3. Section of intensity image with detected
and matched keypoints using front face scan.

Table 2. Estimated CPs by using Two-Face
Method.

CP p̂ σ p̂ max(ρ p̂) with
x1z 5.92 mm 0.19 mm 0.44 x5z7

x2 0.04 mm 0.06 mm 0.64 x4

x3 0.66 mm 0.04 mm 0.95 x6

x4 −0.53′′ 2.7′′ 0.99 x5z7

x5z7 −1.08′′ 2.77′′ 0.99 x4

are used to determine the corresponding CPs as de-
scribed in section 2.2.
Since the Two-Face Method relies solely on data
measured from a single station in front and back
face, only CPs that are sensitive to two faces can
be determined (indicated by * in table 1). Addi-
tionally, the dam presents a challenging measure-
ment geometry, as no keypoints have vertical angles
< 59◦ which has an unfavorable effect on the deter-
minability of the parameters. Due to the proximity
of the station to the dam, many measurements ex-
hibit high incidence angles, introducing additional
systematic effects unrelated to geometric misalign-
ments. As a result, only the CPs x1z, x2, x3, x4, x5z,
x6 and x7 can be determined. The CPs x5z and x7
have the same functional impact on the horizontal
angle (see equation 3), making them indistinguish-
able in calibration. They are therefore combined
into a new parameter x5z7 = x5z −x7. For every esti-
mated parameter the estimated value p̂ and the cor-
responding standard deviation σ p̂ as well as maxi-
mal correlation coefficient max(ρ p̂) and the maxi-
mal CP is shown. The estimated CPs are applied
to the point cloud, and M3C2 differences are calcu-
lated, just as in the uncalibrated case. The left part

Table 3. Statistical properties of the M3C2 differ-
ences.

method mean [mm] RMS [mm]
uncalibrated 2.9 4.3

Two-Face Method 1.7 2.8
Two-Face + Network Method −0.36 2.0

of figure 2b) visualizes these differences, while the
histogram on the right presents the computed differ-
ences for the calibrated point cloud.
Compared to the uncalibrated point cloud, the dis-
tribution of differences becomes narrower and more
closely to a normal distribution. Across the entire
dam, the overall magnitude of deviation between
the two faces is reduced; however, noticeable sys-
tematic effects are visible near the edges. Devia-
tions in both faces remain predominantly positive.
As shown in Table 3, the mean value moves closer
to zero, and the RMS is also reduced.

4.3 Calibration using combined Two-Face
and Network Method

We also estimate CPs by using the combined Two-
Face and Network Method. For the Two-Face
Method part we using the same data as in 2.2,
for the Network Method part, front and back face
scans of targets T1-T9 from stations S3 and S4
are used. Janßen et al. (2019) analyzed empiri-
cally the stochastic model of the BOTA 8 targets,
which is applied for calibration in this study. This
method allows the determination of all CPs in table
1. As in the Two-Face Method, the CPs x5z and x7
which influences the horizontal angle are combined
to x5z7 = x5z − x7. Similarly, for vertical angle mea-
surement, parameters x5z and x9z, as well as x5n and
x9n, exhibit the same functional impact. By combin-
ing these pairs, the new parameters x5z9z = x5z + x9z

and x5n9n = x5n + x9n are introduced. As a result,
the total number of parameters to be determined is
reduced from 18 to 16. Estimated CPs including
standard deviations and correlations are presented in
table 4. Figure 2c) illustrates computed M3C2 dif-
ferences after applying CPs to the point cloud. The
overall magnitude of the M3C2 deviations across
the dam is significantly reduced compared to the un-
calibrated case. Table 3 shows, that mean M3C2
differences and RMSs are also reduced compared
to the Two-Face Method. Systematic deviations are
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Table 4. Estimated CPs by using combined Net-
work and Two-Face Method.

CP p̂ σ p̂ max(ρ p̂) with
x1z −0.84 mm 0.07 mm 0.37 x12a

x2 0.07 mm 0.01 mm 0.16 x12b

x3 0.01 mm 0.01 mm 0.04 x2

x4 −0.51′′ 0.12′′ 0.52 x8y

x6 −5.43′′ 0.08′′ 0.54 x11a

x5z7 −12.15′′ 0.6′′ 0.80 x11b

x1n −0.41 mm 0.01 mm 0.74 x5z9z

x8x 12.11′′ 0.08′′ 0.70 x12a

x8y −10.05′′ 0.15′′ 0.52 x4

x5n9n 11.7′′ 0.28′′ 0.36 x6

x5z9z 26.29′′ 0.52′′ 0.74 x1n

x10 0.36 mm 0.03 mm 0.44 x1n

x11a 4.13′′ 0.89′′ 0.54 x6

x11b 10.92′′ 0.87′′ 0.80 x5z7

x12a −3.3′′ 0.15′′ 0.70 x8x

x12b 17.91′′ 2.07′′ 0.44 x11a

still present but are significantly reduced through
calibration. Notably, the deviations shift towards
zeros. In contrast to the Two-Face Method, more
deviations now are negative. Unlike the left (neg-
ative) side of the histogram, the distribution on the
right (positive) side now closely resembles a normal
distribution.

5 Discussion

Both calibration methods effectively reduce system-
atic effects. This can be verified by a direct two-
face M3C2 point cloud comparison. Calibration
minimizes the impact of many systemic influences
to a level below the expected random measurement
noise, despite measuring distances of 100 m in some
cases.
However, systematic deviations cannot be entirely
eliminated. Even after calibration, noticeable ef-
fects remain at the edges of the dam, likely caused
by high incidence angles rather than internal scan-
ner misalignments, making them irreducible with
the presented methods. The same applies to points
near the zenith. If all systematic influences were
completely removed, the M3C2 distances would
follow a normal distribution with a mean of zero.
While calibration brings the distribution closer to a
normal distribution, it does not fully achieve it. Due

to remaining systematic effects, a perfectly normal
distribution of differences cannot be expected.
Since the Two-Face Method does not estimate all
parameters, the overlapping parameters between
both methods show discrepancies. Notably, in the
Two-Face Method, parameters x2, x4 and x5z7 ex-
hibit particularly large standard deviations, often
comparable in magnitude to the parameters them-
selves. Additionally, these parameters show strong
correlations with others. In contrast, when using all
parameters in the combined approach, both standard
deviations and correlations are reduced.
Both approaches enhance the quality of the point
cloud. While the Two-Face Method offers less po-
tential for improvement, it requires no additional
measuring equipment. If artificial targets are al-
ready being used for registration, the combined ap-
proach yields even greater improvements.

6 Conclusion and Outlook

We introduced Two-Face and combined Two-Face
and Network Method to estimate calibration param-
eters. While the combined Two-Face and Network
Method allows the determination of all calibration
parameters, the Two-Face Method alone provides
only a subset. Nevertheless, both approaches signif-
icantly reduce systematic effects caused by internal
scanner misalignments. As self-calibration meth-
ods, they require no additional measuring equip-
ment beyond the existing setup, making them easy
to integrate into the measurement process.
The data shows remaining systematic effects. Cer-
tain calibration parameters exhibit high standard de-
viations and correlations. These issues arise from
measurement configurations that cannot be adjusted
in-situ. A potential solution would be performing a-
priori calibration immediately before measurement
using optimized calibration fields.
In the combined method, artificial targets are used
to ensure that identical points are visible from mul-
tiple stations. To increase the number of identical
points, keypoints could be incorporated. However,
to mitigate challenges arising from varying view-
points during keypoint extraction and matching, it
would likely be necessary to use 3D keypoints in-
stead of the 2D keypoints applied in this study.
The M3C2 point cloud comparison of front and
back face assesses only systematic effects that are
sensitive to two faces. To evaluate all effects
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comprehensively, future studies could incorporate
length normals into the environment. These would
enable the assessment of all calibration parameters.
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Medić, T., Kuhlmann, H., and Holst, C. (2019b).
Designing and evaluating a user-oriented cali-
bration field for the target-based self-calibration
of panoramic terrestrial laser scanners. Remote
Sensing, 12(1):15.
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