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Abstract

Representing and characterizing terrain change dynamics from multi-epoch 3D point clouds remains a chal-
lenge. In case of 2 epochs, subtracting the corresponding terrain models conveys local erosion and sedimenta-
tion patterns, but not landform rotation and translation. Current laser scanning possibilities provide us easily
with 10s (drone or airplane based LiDAR) to 1000s (permanent laser scanning) of consecutive epochs of ter-
rain data representing sandy beach-dune systems. Coastal dunes grow or shrink vertically over time, but also
migrate and reorient due to eolian or marine forcing. Instead of considering pairwise epoch comparisons, we
propose to assess the change of such dynamic 3D objects by simplifying these objects using the so-called
medial axis transform (MAT) as shape descriptor. The MAT provides MAT points that are positioned cen-
trally inside (or outside) the surface, here the dune surface as sampled by laser scanning. The MAT points
can directly or indirectly, via a local neighborhood analysis, be used to estimate local dune ridge positions.
The MAT radius is a parameter directly linked to the local scale of a dune. The MAT analysis also allows
to estimate the local orientation and asymmetry of the considered dunes. This MAT methodology will be
demonstrated on 2 different case studies. The first case considers 5 epochs of UAV-LiDAR data of an embryo
dune field at the Sand Engine, The Netherlands. The second case considers a mature dune system sampled by
3 epochs of airborne LiDAR data, i.e. the Dune du Pila on the French Atlantic coast.
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1 Introduction

Multi-epoch 3D point clouds are increasingly used
in geomorphology with the hope that measuring
the state and rates of morphological changes will
help flag the processes behind these topographic
changes. With the rise of ever easier topographic
acquisition devices, point clouds come in time se-
ries of tens to thousands. As a consequence, mak-
ing sense of the spatio-temporal vertical change
pattern becomes increasingly difficult. Current at-
tempts to extract meaning from point cloud se-
quences has focused on detecting regions where
points change in a similar fashion both in elevation
and time (Kuschnerus et al., 2021). A search for
causal processes is then launched to explain the tem-
poral sequences of the different geographic clusters
(Hulskemper et al., 2022).

An alternative approach is object-based change
detection. In each epoch, objects are detected,

then matched across epochs, and finally geometric
changes in object parameters are reported. In ge-
omorphology, these objects are the landform under
consideration. Key for an object-based approach is
to determine, first, what characterizes a particular
type of landform, and, second, how such character
can be expressed as a descriptor that can be effec-
tively extracted from detailed unstructured 3D point
clouds.

In case of dunes and dune fields (Grohmann et al.,
2020), the objects are individual dunes and compo-
sitions thereof. Geomorphologists analyzing dunes
may retain their height, volume, orientation and
shape or regularity (Walker et al., 2013). For a
single, isolated dune, this may come down to ana-
lyzing its outline and ridge line. Recently, Daynac
et al. (2024) presented a workflow to, first, identify
dune fields using deep learning from DEM-derived
images, and second, to extract ridges and outlines
from the DEM represented as a gray scale image
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through a morphological surface skeletonization ap-
proach. Chen et al. (2023) uses surface skeletons
to reconstruct terrain in an alternative deep learning
approach.

Above methods extract line elements from 2.5D
raster representations of dune terrains. An alterna-
tive approach is to describe dune geometric struc-
ture natively in 3D, first, above and below the topo-
graphic surface over a range of spatial scales, and,
second, to use this structural description to explore
the geomorphological properties of the dune. The
structural descriptor is the medial axis transform
skeletonization method. The medial axis of a 2D
or 3D object is defined as the locus, i.e., the col-
lection of points in the containing space that are at
equal closest distance to two points on the surface of
an object. In addition to the location of the medial
axis points itself, their distance to the topographic
surface also informs the object shape. The extrac-
tion of both medial axis points and associated ra-
dius is referred to as Medial Axis Transform (MAT),
Blum (1967). The notion of MAT is closely related
to those of center line and skeleton. One difference
though is that the MAT of a 3D object is not neces-
sarily built up from line elements.

In recent years robust algorithms have been devel-
oped to extract the medial axis in 3D, from noisy,
real world point clouds. Peters and Ledoux (2016)
showed how to extract the MAT from noisy air-
borne laser scanning point clouds, for visualization
purposes. Widyaningrum et al. (2020) shows how
the MAT can be used in extracting building outlines
from airborne laser scanning point cloud. However
MAT has hardly been exploited for 3D geomorpho-
logical monitoring applications. Therefore the goal
of this contribution is as follows:

• Use MAT and its properties to parameterize
dune shape in different settings, from sets of
LiDAR point clouds.

• Explore the potential of MAT and its properties
in characterizing dynamic dune changes.

These goals mean to design a single epoch cloud-
to-features algorithm, and then look for feature se-
quence dynamics descriptors. Skeleton pattern de-
velopment is expected to relate to eolian forcing and
may offer a means of predicting the future state and
size of beach features. Presumably, sand flux will be
highest when dunes/shoals are fully expressed and

reduced when in transition state.

2 Methodology: medial axis

Figure 1. Medial axis point c is the center of the
medial ball touching the surface S in points p
and q.

2.1 Definition of medial axis

Suppose we are given a set of 3D surface points S.
A point c is part of the medial axis MS of S if there
exists an empty sphere, centered at c that touches
S in two points, and contains no points of S in its
interior, compare Figure 1. Note that each medial
axis point c comes with a radius ρc of its defining
empty sphere. The larger this radius ρc, the further
c is from the surface S, which gives a sense of scale
of the surface it corresponds to. Smaller spheres de-
scribe narrow ridges, while larger spheres fit more
open hills. The collection {cS} of sphere centers
progressively fitting ridge sections will form a line
in 2D, and a surface in 3D. The shape of this 3D sur-
face summarizes characteristics of the landscapes :
presence of a curved surfaces, their aperture (pcq
angle), and their asymmetry.

The medial axis is defined for either side of the sur-
face S. In the context of dunes, parts of the medial
axis corresponding to its ridges, will be below the
surface (i.e., the internal MAT), while the parts of
the medial axis corresponding to dune toes or heels
will be above the surface (i.e., the external MAT). In
Figure 1 only the part of the medial axis below the
surface is shown. Peters and Ledoux (2016) defines
the Medial Axis Transform (MAT) as the set of me-
dial spheres, and the medial axis as the set of medial
sphere centers.
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2.2 The MAT algorithm

An efficient way to compute an approximation of
the MAT is described in Peters and Ledoux (2016)
and extends the so-called shrinking ball algorithm
(Ma et al., 2012). The input is a set of 3D points
on an oriented surface, which means that each point
possesses a pre-computed normal vector pointing
outward of the surface S. At each point p belong-
ing to surface S, a large sphere is fitted. The sphere
surface is tangent to surface S (meaning vector cp is
collinear with the normal in p). This sphere radius is
progressively reduced until only one other point of
S, q, touches the sphere surface and no other point
of S remains inside the sphere. As the fitting algo-
rithm is sensitive to measurement noise, Peters and
Ledoux (2016) implemented two additional checks
that favors more robust MAT results.

2.3 MAT parameters

To run the MAT algorithm, some parameters need to
be set. For the initial MAT algorithm these are the
radius of the initial large sphere and a neighbor-
hood size to estimate a surface normal from points
within the neighborhood. For the robust extension,
two additional parameters are needed. First, a de-
noising parameter. The idea is, compare Figure 1,
that if a ball is spanned between initial point p, cen-
ter point c, and point q, the separation angle ∠pcq
should not be smaller than a given threshold. If it is,
this might be the result of some random error around
the actual surface. If this angle is below the thresh-
old after a shrinking iteration, the previous ball (and
center) are used instead as final MAT center. The
second extension considers the surface planarity.
Planar surfaces have an infinite curvature radius.

If at the first iteration the angle ∠pcq is smaller than
the planarity parameter threshold, the procedure
is stopped and we do not look for a MAT for surface
point p under consideration, as p in this case is ap-
parently part of a near-planar surface, which would
correspond to a near-infinite MAT radius.

2.4 MAT based ridge extraction

Because the vector cp is collinear with the surface
normal, internal MAT sphere centers are located be-
low the topographic surface. The ridge line does not
belong to the MAT. An approximate ridge location
is obtained by extrapolating the trend of the MAT

Figure 2. MAT points (in blue) around given MAT
point c are used to estimate local dune dip direc-
tion. The dip direction vector intersects the surface
S in approximate ridge point j.

surface across the topographic surface, see Figure 2.
The ridge point is the nearest surface point i to the
medial vector ci. Vector ci is collinear with the trend
of the MAT surface. This trend is locally orthogonal
to the MAT surface normal. We solve it empirically
by rotating the topographic point cloud reference
frame to the dominant dip/direction of the MAT sur-
face and project along the pseudo coordinate axis Z.
Ridge line points lie in the direct neighborhood of
projected centers c.

Figure 3. Cross section through successive topo-
graphic epochs P1 to P3 and corresponding in-
clined MAT surfaces. The ocean is on the left
(West), land is on the right (East). MAT inclina-
tion to the right indicates dominance in shaping the
sand pile.

This projection approach is only precise if the MAT
surface is planar upward. With complex dunes,
the MAT surface is curved in 3D and the average
dip/dip-direction approximation may slightly inac-
curately flag topographic points as ridge lines, com-
pare Figure 3. Further development is required to
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solve this labeling in a more satisfying way.

In the case of symmetrical dunes, a simplification
of the method is used. In this case, the MAT sur-
faces are expected to be approximately vertical. As
a consequence, ridge points lie directly above MAT
sphere centers. In other words, the ridge positions
are directly indicated by the xy coordinates of the
MAT points. Capturing ridge line migration is one
of our goals. We will show that the MAT method in-
deed retrieves this indicator of dune dynamics from
a point cloud sequence. Dune asymmetry relates
to force imbalance between morphogenic processes.
In Figure 3, windblown ridge lines display this im-
balance between gravity and a westerly wind - act-
ing from the left of the figure.

2.5 Descriptive MAT parameters

In addition to the ridge points, other MAT param-
eters also have a direct morphological interpreta-
tion. The local MAT radius quantifies dune size
and kurtosis. Larger dunes will have in general big-
ger local MAT radius as the dune surface would fit
a larger empty MAT sphere. If a dune hosts super-
imposed narrower ridges and ripples, these will be
fitted by shorter radii. A complete MAT surface
therefore captures the whole range of morphologi-
cal feature’s length-scales at once. The MAT dip
direction, equivalent to the MAT-normal azimuth,
can also be directly estimated from a local neigh-
borhood of MAT points, see Figure 2. It gives the
local ridge normal and relates to the forces acting
to alter it shape. The MAT dip, i.e., the 1D slope
of the planes approximating the MAT neighbors of
a MAT point c is an indication for the local asym-
metry of the dune. A strictly horizontal MAT dip
of 90◦ would describe a symmetrical section, with
p and q at equal elevation and a strictly vertical vec-
tor ci. An oblique dip (less than 90◦) indicates an
asymmetry between ridge limbs, and thus an imbal-
ance between morphogenic forcing, i.e., gravity vs.
dominant wind transport.

2.6 Implementation

Results in this paper were extracted and visualized
using Python and CloudCompare. The robust MAT
algorithm by Ravi Peters was used, as described in
Peters and Ledoux (2016). His code is available via
(Peters, 2018).

3 Data description

Table 1. LiDAR acquisition dates, for Sand engine
(left) & Pila (right)

Epoch Date Epoch Date
S1 27-2-2024 P1 23-7-2023
S2 1-5-2024 P2 3-9-2023
S3 7-6-2024 P3 30-9-2023
S4 17-7-2024
S5 9-10-2024

Methodology is demonstrated on two different Li-
DAR data sets, see Table 1. First, on five epochs
of UAV LiDAR data of a field of juvenile dunes at
the Sand engine in The Netherlands, and, second,
on three epochs of aerial LiDAR data of the large
French Dune du Pila.

Figure 4. Embryo dunes at the Sand Engine
(Photo: W. van Teeffelen)

3.1 UAV LiDAR data - Sand engine

The Sand engine, just South of the Dutch city of
The Hague is a large sand suppletion project that re-
sulted in a sandy peninsula of ∼ 10 km2 directly on
the coast. It started ∼ 10 years ago and shows a va-
riety of dynamic processes (Stive et al., 2013). No-
tably an embryonic dune field emerged, see Figure
4, consisting of juvenile dunes of a few meters high,
typically consolidated by marram grass.UAV Li-
DAR data of the dune field has been acquired in five
epochs, S1 to S5, by a Yellowscan Mapper+ system
with a point density of about 300pts/m2 between
February and October 2024. A first impression of
the dynamics of the area is presented in Figure 5.
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Figure 5. Flared spatially intermittent ero-
sion/accretion patterns between UAV LiDAR
epochs S1 and S2 at the Sand engine.

The figure shows a plot of the differences between
epochs S1 and S2, which were acquired 2024-02-
27 and 2024-05-01, respectively. This image shows
the spatial correlation between small dunes and the
erosion/ deposition pattern.

To speed up MAT computation, point clouds
were rasterized from nominal 300pts/m2 to regu-
lar 0.25 m grid pixels using an ordinary mean of all
cell points.

3.2 ALS data - Pila

Dune du Pila on the French Atlantic coast is part
of the largest coastal sand dunes in the world. It
reaches a height of over 100 m (Bossard and Nico-
lae Lerma, 2020). LidarHD flew several times over
the dune in 2023, see dates in Table 1. Classified
point clouds are available from IGN (2025). The
final point density reached 60 pts/m2 (distribution
mode) in tile 0365-6387, cf. Figure 8, by stack-
ing three distinct campaigns, over the course of 67
days. This practice unwillingly captured the highly
dynamic nature of the dune all bundled in a single
LAZ file. In this work, all three epochs, P1 to P3
are processed, see Table 1. The point clouds were
rasterized to a regular 1 m grid cell size by taking
the ordinary mean of all cell points.

4 Results

The neighbourhood size used for surface normal es-
timation influences the level of detail of the skele-

ton. Larger neighborhoods reduce the ability to cap-
ture small landforms, but tighter neighborhoods risk
to overfit insignificant morphologies or even noise.
As we rasterize point clouds into DTMs, a neigh-
borhood size of 4 is used, meaning that only the grid
cells neighboring in X and Y direction are used to
fit a plane for surface normal estimation.

4.1 Sand engine

The MAT settings for the Sand engine dataset are as
follows. The initial radius is set at 50 m, while the
values of the denoising parameter and the planarity
parameter were both 10◦. These settings are based
on an empirical analysis of initial results.

Figure 6 shows for epochs S1, S3 and S5 the esti-
mated ridge points, in red, superimposed on a hill-
shaded DTM. Epochs S2 and S4 show similar re-
sults to epochs S3 and S5, respectively. Epoch S1
shows elongated features, which can be interpreted
as wind tails. These elongated features are visi-
ble both in the hillshade and in the ridge lines. In
epoch S3 these elongated features have largely dis-
appeared. The estimated ridge lines have shrunk ac-
cordingly, as only rounded dune tops remain. Epoch
S5 shows two regimes. On the top left, rounded
dune tops and short ridges prevail, which aligned
with the results from epoch S3. A contrasting pat-
tern is visible at the bottom. Here, the ridge lines
are more simlar to the ridge lines in epoch S1, and
are parallel to a deeper gully, oriented SW-NE.

Figure 7, A) provides, for each of the five epochs,
the orientation of the MAT derived ridge points. In
the circular plots, both the dip directions (in red)
and the strike angles (in blue) are visualized. The
dip direction provides the direction perpendicular to
the morphology, while the strike angles give the di-
rection of the ridge lines. Figure 7, B) summarizes
the wind conditions for the period proceeding each
of the UAV LiDAR acquisition as indicated.

Epoch S1 was apparently proceeded by a period
of stronger winds from South West direction. It
seems that, as a consequence, the juvenile dune
field MAT strike aligned itself parallel to the wind.
The stronger wind may have enabled sand transport.
Once the wind reached the lee side of a dune head,
wind strength may slightly drop, resulting in sedi-
mentation at the lee side. If such process is able to
continue for a while, elongated dune ridges parallel
to the wind direction can develop.
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Figure 6. MAT points projected on hillshade visualization of UAV LiDAR DTMs for A), epoch S1, B) epoch
S3, and C), epoch S5, at an embryo dune field at the Sand engine.

Figure 7. A) Distribution of orientation of vertically projected Internal Medial Axis Transform (MAT) points
based on local neighborhood. The strike angle represents the azimuth direction of the longest axis of the
ridge. The dip direction refers to the direction in which the MAT plane slopes, corresponding to Figure 2.
The latter is symmetrically ambiguous for vertical MAT surfaces, and as such all were computed in one di-
rection. B) Wind rose of the wind regime during periods as indicated, prior to each epoch. The radial axis
represents the percentage of time a certain interval of wind speed was present.

Prior to epochs S2 and S3, see Figure 6, B), winds
were weaker and more variable in direction. Pre-
vious leeward tails of both ridges and gullies have
largely disappeared, and the area behind the dune
fronts has flattened out. Before epoch S4, Figure 6,
C), wind has a predominantly SW orientation, but
wind speeds do not exceed 9 m/s. Gullies and tails
with the same SW orientation are present at the bot-
tom of the figure, but less pronounced than at epoch
S1, while ridges at the top of the figure are largely
similar to the situation in epoch S1.

4.2 Pila

The MAT settings for the Pila dataset are as follows.
The initial radius is 200 m, the denoising and pla-
narity parameter angles were both set to 20◦. These
settings are based on an empirical analysis of initial
results.

Figure 3 illustrates the actual dip across the Pila
dune. One can see the overall oblique MAT surface
across two ridges. The top of the MAT surface is
slightly curved: smaller dip values correspond to a
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Figure 8. MAT ridge points (radii between 50 and
60 m) of epochs P1 (dark), P2 and P3 (light) pro-
jected on ALS Pila topography of 30 Sept. 2023.

Figure 9. MAT ridge points for epochs P1, P2 and
P3, overlaid on ALS LIDAR dune field for Pila.

shorter radius.

Figure 8 shows the extracted ridge points for epoch
P1, overlaid on a shaded relief terrain model. Note
that in this case the ridge points are MAT points pro-
jected onto the surface using a local MAT neighbor-
hood as discussed in Section 2.4. As can be seen,
the projected MAT points are indeed located on the
ridges as visible in the shaded relief plot, but some
systematic deviations occur. A possible explanation
is that involving a MAT neighborhood has a smooth-
ing effect, which keep projected ridge points away
from the real ridge locations. This has to be ana-
lyzed further though. An alternative explanation is
that the peaks of the dunes display a different mor-
phology than the full dune, that is, the dune top may
have a more direct response to the forcing.

Figure 9 has the extracted ridge points for all three

Figure 10. Histograms of the MAT radii values
for Pila. Note the density changes in the range be-
tween 40 and 120 m between epochs

epochs P1, P2 and P3 superimposed on P3 shaded
relief DTM. In addition, Figure 10 shows three his-
tograms, one for each epoch P1, P2 and P3, respec-
tively with identical temporal color coding. The his-
tograms summarize MAT sphere radii distribution
at each epoch. Here bigger radii of up to 200 m
correspond to broader dune ridges. Histograms all
display a similar mode with sphere radii around 20
m. But from July to September longer radii mor-
phologies emerge. At the end of September (P3)
a remarkable secondary mode emerges for feature
matching spheres radii of ca. 120 m. Figure 9 shows
that the dominant ridge line to the east remains rela-
tively stable through the summer 2023 (see also Fig-
ure 3), and that secondary ridges have drifted land-
ward at a rate of ca. 9 m in 67 days, i.e. 0.13m/day.
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5 Conclusions

The Medial Axis Transform (MAT) with its accom-
panying parameters is a morphological shape de-
scriptor that can be used to effectively describe and
monitor the shape of dynamic landscape elements
such as dunes. In this contribution it is shown how a
robust version of the shrinking ball algorithm can
be used to estimate ridge points, and proxies for
dune size and dune asymmetry from two types of
LiDAR data. On a juvenile dune field sampled by
UAV-LiDAR the MAT method was demonstrated to
be able to quantify quick morphological response
from changing wind conditions. On the mature
Pila dune, sampled by airborne LiDAR, the MAT
method was able to automatically reveal changes in
secondary dune ridges, and suitable to analyze the
size and asymmetry of dune ridges. Further research
is needed to study the sensitivity of the method to
parameter settings such as the local MAT neighbor-
hood size.
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