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Abstract 

This work proposes a supervised classifier of ground motion (GM) phenomena using as main input 
the European Ground Motion Service (EGMS) datasets. The availability of such an extended 
dataset allows implementing wide area tools to detect and classify GM phenomena, that can be 
useful for potential users to evaluate hazard and mitigate risks. This work proposes a wide-area 
ground motion classifier (GMC) that categorizes areas affected by GM phenomena into three main 
classes, i.e. deep-seated gravitational slope deformation (DSGSD), landslides and subsidence. The 
implementation of the classifier is preceded by the identification of active deformation areas 
(ADAs) through the ADAfinder tool. The Extreme Gradient Boosting (XGB) technique was 
selected for this classification problem. The result of this work is a European map of ADAs, 
classified into the above-mentioned deformation classes.  
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1 Introduction  

Monitoring ground deformation represents a 

critical task for mitigating risks to infrastructure 

and the built environment, which has been tackled 

in recent years by different remote sensing 

techniques. Among the technologies employed, 

both spaceborne and terrestrial Synthetic Aperture 

Radar (SAR) imagery, processed through 

Persistent Scatterer SAR Interferometry 

(PSInSAR), has achieved significant performance 

(Crosetto et al. 2016; Ferretti, Prati, and Rocca 

2001). PSInSAR measures the displacement of 

strong radar reflectors, i.e. persistent scatterers 

(PS), on the radar line-of-sight, by processing the 

SAR interferometric phases. This technique has 

evolved in the recent decades, achieving high 

performance both in terms of coverage and 

accuracy, through advanced approaches (Ferretti et 

al. 2011; Pepe et al. 2015), allowing the generation 

of regional and national datasets (Confuorto et al. 

2023). PSInSAR was employed to produce a 

monitoring service of GM phenomena over the 

European territory, the European Ground Motion 

Service (EGMS). This wide-area dataset, which 

enables the creation of automated tools for 

detecting and classifying GM events, is the most 

recent addition to the product portfolio of the 

Copernicus Land Monitoring Service. The Service 

is funded by the European Commission in the 

frame of the Copernicus Programme and is 

implemented under the responsibility of the 

European Environment Agency (Crosetto et al. 

2020). This work performs a wide-area ground 

motion classifier (GMC) that categorizes areas 

affected by GM phenomena into three main 

classes, i.e. slow-moving slope deformation 

phenomena (mostly represented by deep-seated 

gravitational slope deformation phenomena, 

DSGSD), landslides and subsidence. The Italian 

National Landslide Inventory is employed to 

derive DSGSD and landslide labels, the subsidence 

map of Emilia-Romagna region (Italy) and mining-
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related subsidence in Poland for the subsidence 

label (Palamà et al. 2022; Pawluszek-Filipiak and 

Borkowski 2020). Specifically, the DSGSD 

phenomena consist of mountain slope deformation 

of steep, high mountain slopes, with slow 

movement rates (Ambrosi et al 2006, Hungr et al 

2014, and has relevant differences with the 

rotational/translational landslide class – showing 

faster rates - that is also considered in this work. 

However, DSGSDs may evolve into faster 

phenomena, which often results in common 

properties between these two classes. It should be 

noted that volcanic and earthquake-related 

deformations are not considered in this work.  

This approach tackles a supervised feature-based 

classification task, which is complicated by the 

presence of missing values, such as the absence of 

Persistent Scatterer points in ADA polygons for 

one of the two Sentinel-1 orbit trajectories. To 

address this, the Extreme Gradient Boosting 

(XGB) algorithm is employed, chosen for its 

ability to handle incomplete datasets and its strong 

performance in similar machine learning 

applications. XGB is an evolution of traditional 

decision trees, which sequentially adds in order to 

minimise a chosen loss function (Chen and 

Guestrin 2016). Once trained, the classification 

algorithms were tested on the test set and their 

performance compared. For the final deployment 

of a user-level product, the trained model is 

launched on the unlabelled dataset to produce a 

new global classified dataset. The importance of 

the classification features is also studied, in order 

to gain insight about the performed classification. 

The contributions of this work can be summarized 

as (i) the implementation of a classifier of ground 

deformation phenomena working for the whole 

European territory, combining PSInSAR (EGMS) 

data, DEM and Land-Cover, preceded by (ii) the 

systematic derivation of a training dataset for such 

classifier using labelling data available from 

landslide and subsidence inventories. The GM 

classification aims at providing interested users 

with a dataset of GM phenomena that can be used 

for an early identification of areas at risk. 

Furthermore, we propose a GM classifier 

framework with high generalizability, using input 

data sources (EGMS, DEM and Land cover maps), 

that are available over wide areas. 

This work is organized as follows: section 2 

illustrates the employed datasets, section 3 

addresses the pre-processing stages, i.e. ADA 

extraction and training dataset preparation, 

whereas the classification algorithm is described in 

section 4. The main results are illustrated in section 

5, and conclusions are drawn in section 6.  

2 Dataset description 

The main input of the GMC consists of the EGMS 

Basic Product data, derived from Sentinel-1 data, 

collected from ascending and descending orbit 

trajectories. These maps are combined with 

secondary inputs, i.e. a European Digital Elevation 

Model (EuDEM) and the land cover map (Corine 

CLC). On the other hand, available inventories of 

landslide and subsidence phenomena were 

employed for the preparation of the training 

dataset. In this implementation, the training dataset 

was prepared considering GM phenomena in the 

Italian and Polish territories. The Italian National 

Landslide Inventory (IFFI) was used to label the 

DSGSD and landslide ADAs in Italy, whereas the 

subsidence ones were produced from the 

subsidence inventory of the Emilia-Romagna 

region (Bitelli et al. 2015; Trigila, Iadanza, and 

Spizzichino 2010).  

On the other hand, most of the labelled ADAs in 

Poland concern subsidence phenomena induced by 

underground mining activity, which were collected 

from previous work, e.g. those concerning the 

Legnica-Glogow copper mining areas and the 

Silesian coal basin, and included within the 

subsidence training data. Furthermore, a little 

portion of landslide ADAs were labelled in Poland, 

mostly located in the Carpathian Mountains area. 

3 Pre-processing 

3.1 Extraction of Active Deformation 

Areas 

The ADAfinder tool was developed (Barra et al. 

2017; Ezquerro et al. 2020; Navarro et al. 2020) 

with the aim of easing the management, use and 

interpretation of PSInSAR results, consisting of an 

ADA detection algorithm based on few spatial and 

statistical parameters of the pixel displacement 

time series. The ADA detector first removes 

outliers and isolated PS points, then a velocity 

threshold is applied to eliminate points that are 

considered as stable. In this work we set the value 

of this threshold at 5 mm/year, considering that the 

average noise level for the velocity values of the 

EGMS Basic product is about 2 mm/year. Then, 

the detected points whose distance is lower than 40 

m are grouped together into one polygon defining a 

new ADA. The final stage computes a quality 
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index (QI) for each detected ADA, with values 

ranging from 1 (reliable ADAs) to 4 (very noisy 

ADAs). The QI values are computed accounting 

for the spatio-temporal correlation properties of the 

displacement values associated with the points 

forming the ADA under analysis. In this work, 

only the ADAs whose QI is equal to 1 or 2 are 

considered. The ADAfinder output consists of 

polygons associated with the detected ADAs, 

together with their QI, and various relevant 

statistical parameters (mean, maximum and 

minimum displacement velocity, number of PS 

points), together with the displacement time series 

of the measurement points (MPs) within the 

polygon. 

The ADAfinder tool was applied to each burst of 

the EGMS Basic product. The total processing 

time was about 48 hours. We observe that the 

bursts of the EGMS Basic product are associated 

with the burst of Sentinel-1 data, separately for the 

ascending and descending orbit trajectories. The 

detected ADAs in both trajectories were finally 

merged to generate a single database of detected 

ground deformation areas associated with the 

Sentinel-1 ascending and descending orbit 

trajectories.  

 

3.2 Training dataset preparation 

The following preparation step creates a 

uniformized GMC dataset of ADAs from the orbit-

wise European ADA maps. Such dataset will be 

the basis to train and test ML classifiers, thus for 

each polygon it contains geographical data and 

specific classification features. The creation of the 

GMC dataset starts from the European ADA maps 

for the ascending and descending LOS. It should 

be noted that each orbit-wise ADA map contains 

the ADAs associated with all the tracks of one 

Sentinel-1 orbit trajectory. The intersecting 

ascending/descending ADAs are merged to form 

one ADA of the GMC dataset (which will be 

referred to as global ADA), whereas the ADAs that 

have no intersections are directly included in the 

GMC dataset. The global ADAs are then labelled 

using the ground-truth datasets described in 

Section 2, and collected into the GMC training 

dataset, whereas the remaining ADAs are collected 

into the unlabelled GMC dataset (unseen data). 

Assigning a GM class to the unlabelled ADAs is 

the final objective of this work. Following the 

creation of the dataset, classification features are 

computed for each global ADA. The EGMS MPs 

contained within each global ADA polygon are 

extracted and their features computed from the PS 

point metrics in the EGMS dataset (i.e. velocity, 

acceleration, seasonality). In the case of no 

intersection, the global ADA polygon obtained 

from a single Sentinel-1 orbit is used to extract the 

PS points of the opposite orbit associated with that 

global ADA, and their metrics added to the feature 

vector. If the number of opposite-orbit points is 

smaller than an acceptable limit (set as 3), the 

feature values for that orbit are marked as missing 

values. This procedure, illustrated in Figure 1, 

allows combining, where possible, the information 

associated with both Sentinel-1 orbit trajectories. 

On the other hand, if one ADA is associated with 

only one orbit trajectory, part of its classification 

features will be missing, which is, however, 

tackled by using classification algorithms that cope 

with missing values. We observe that employing 

EGMS Basic product, derived from Sentinel-1 

ascending and descending orbit data, allows 

exploiting the full resolution of Sentinel-1 SAR 

images, whose pixel spacing is about 4m and 14m 

in range and azimuth, respectively. 

 

 

Figure 1. Scheme of the training dataset 

preparation routine 

The feature vector structure is summarized in 

Table 1. The features associated with PS data are 

doubled to consider the ascending and descending 

Sentinel-1 orbit trajectories, yielding a feature 

vector of 21 features. The training dataset (Figure 

2) contains 15898 ADAs, and the numbers of 

ADAs per class are as follows: 2169 (DSGSD), 

6179 (landslide), 5460 (subsidence). This dataset 

will be split into training (80%), validation (10%) 

and test (10%) sets in the implementation and 

performance evaluation stages of the classifier (see 

section 5).  
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Table 1. Feature vector structure for the GMC 

Feature 

Name  

Description 

MnVel Mean velocity (PS) 

MnVStd Mean standard deviation of velocity 

(PS) 

MnAcc Mean acceleration (PS) 

MnAStd Mean standard deviation of 

acceleration (PS) 

MnSeas Mean seasonality (PS) 

MnDA Mean dispersion of amplitude (PS) 

MnTCoh Mean temporal coherence (PS) 

Mean_DEM Mean DEM value 

Std_DEM Standard deviation of DEM 

Mean_Slope Mean slope value 

Std_Slope Standard deviation of slope 

Mean_Aspect Mean value of the aspect angle  

Std_Aspect Standard deviation of the aspect 

angle values 

LandCover Dominant land cover/use class within 

the ADA  
 

4 Ground-motion classifier 

algorithm 

The GMC was implemented by the XGB 

algorithm, which is an ensemble technique that 

builds models sequentially, by progressively 

combining base learners. XGB uses decision trees 

as base learners and includes regularization terms 

to penalize the complexity of the model, avoid 

overfitting and ensure generalization (Chen and 

Guestrin 2016; Prokhorenkova et al. 2018). The 

XGB operation can be summarized by: 

1. Initialization: set a simple initial model, 

which predicts the mean of the target variable. 

2. Adding trees sequentially, where the 

residuals are computed for each iteration. The 

residuals are represented by the gradients of the 

loss function with respect to the current 

predictions. A new tree that fits these residuals is 

added, predicting the gradient, with the aim of 

reducing the errors made by the current model. 

3. Learning objective and tree pruning. The 

objective function to optimize is a combination of 

a loss function (softmax for multi-class 

classification) and both L1 and L2 regularization 

terms (respectively indicated as alpha and 

lambda). Tree pruning is performed by setting the 

maximum depth (i.e. the maximum number of 

levels of a tree) and the minimum child weight (i.e. 

the minimum sum of instance weights of a child). 

5. Shrinkage. After adding a new tree, XGB 

weights the predictions (i.e. class scores) by a  
 

 
(a) 

 
(b) 

Figure 2. GM Labelled dataset in Italy (a), Poland 

(b) 

shrinkage factor (learning rate), such that 

subsequent trees make only small adjustments, 

which aims at improving the model robustness. 

6. Output. The final prediction for one data 

sample is the sum of the initial prediction and the 

weighted scores of all the trees that are 

progressively added. The output scores for each 

class are transformed into probability values using 

the softmax function. XGB provides a measure of 

feature importance based on the number of times a 

feature is used to split the data across all the trees 

and the relative gain in the loss function attributed 
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to each split. This information summarizes the 

impact of each feature on the ground motion 

classification, which is intended to introduce the 

concept of explainable artificial intelligence (XAI) 

in the study of GM phenomena from SAR data. 

The main XGB hyperparameters (learning rate, 

min child weight, maximum depth, alpha, lambda) 

were set by a tuning routine based on a Bayesian 

optimization framework (Shahriari et al. 2016). 

The hyperparameter tuning launched 100 

iterations, employing the accuracy as optimization 

metric, resulting in the following optimal 

hyperparameter values: learning_rate = 0.089, 

max_depth = 8, min_child_weight = 0, alpha = 0, 

lambda = 0.787.  

 

5 Results 

5.1 Test dataset 

The GMC classifier was implemented on the 

Italy&Poland dataset, using three classes, i.e. 

landslide, DSGSD and subsidence (that is 

including also the underground mining ADAs). 

The training dataset was split into training (80%), 

validation (10%) and test (10%) sets. The results 

are computed on the test set and are shown in the 

confusion matrix (Table 2) and classification 

performance metrics (Table 3). The results show 

good performance, with a misclassification 

affecting DSGSD and landslide classes. 

Furthermore, we observe that for the landslide and 

subsidence classes the values of the metrics are 

always greater than 90%, with very high values 

associated to the subsidence class. This good 

performance seems to confirm that the hypothesis 

of the underground mining class being included 

into the subsidence class is correct. On the other 

hand, landslide and DSGSD classes have similar 

characteristics (occurring in areas with non-flat 

topography, i.e. mountainous and hilly 

environments) and they are often spatially close, as 

DSGSD are likely to evolve into landslides. This 

results in lower accuracy values for both classes 

and higher number of false positives.  

Furthermore, with the aim of exploring the 

explainability of the classification algorithm, we 

have evaluated the feature importance (IF) values, 

revealing that the more relevant features are DEM 

(IF ~22%), slope (IF ~20 %), mean velocity of the 

PS displacement time series (IF~18% for both 

trajectories). In particular, DEM and slope features 

are better suited to identify the subsidence class, 

whereas discriminating between DSGSD and 

landslide classes is enabled by the PS velocity and 

acceleration features. 

Table 1. Confusion matrix – GM classification 

 Landslide DSGSD Subsidence 

Landslide 2478 86 49 

DSGSD 234 425 1 

Subsidence 15 1 4229 
 

Table 2. Performance metrics – GM classification 

GM class precision recall F1-score 

Landslide 0.91 0.95 0.93 

DSGSD 0.83 0.64 0.73 

Subsidence 0.99 0.99 0.99 

Average 0.91 0.86 0.88 

 

5.2 Deployment 

The GMC model derived and trained as described 

in section 5.1 was deployed to the unlabeled ADAs 

over the whole European territory, producing a 

European map of ADAs classified into three 

classes of GM phenomena, i.e. DSGSD, landslide 

and subsidence, shown in Figure 3. We observe 

that subsidence ADAs are located in coastal and 

flat topography areas, such as the territory of 

northern France, Belgium, Netherlands, northern 

Germany, Poland, the Baltic countries and the 

United Kingdom. On the other hand, landslide 

ADAs are mostly present in areas with significant 

slopes, i.e. the Alpine arc, the Apennine mountains 

(Italy), Carpathian and Scandinavian mountains. 

Finally, DSGSD ADAs are mostly located in areas 

with very high slopes and altitudes (Alps and 

Pyrenees). The number of occurrences per class are 

as follows: 194,627 subsidence ADAs, 272,563 

landslide ADAs, 17,432 DSGSD ADAs.  

The GMC was implemented in Python language 

and launched on a 48 CPUs machine. The amount 

of time to train and test the GMC was about 3 

hours.  

6 Conclusions 

This paper presents a ground motion classification 

technique applied to the European Ground Motion 

Service data, enriched by DEM, Slope and Land 

Cover data. The results show a distribution of 

landslide, subsidence and DSGSD ADAs that finds 

justification from the topography of the European 

territory. Future work will add further deformation 

classes to the GMC. 
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Figure 3 . Ground motion classification results over the European territory (covered by EGMS), as result of 

the deployment of the ground motion classifier to unseen data, i.e. unlabelled active deformation areas. 
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