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Abstract

Terrestrial laser scanning (TLS) can offer an effective solution to geomonitoring problems by providing high-
resolution point clouds, which serve as a basis for estimating dense 3D displacements. The uncertainty of
such estimates, as well as the means of reducing it remain largely unexplored. We present a case study to
evaluate the accuracy of TLS-based deformation estimates from an alpine monitoring campaign consisting of
6 scanning epochs between 2019 and 2022. The point clouds acquired with a Riegl VZ-4000 scanner were
processed using the Feature to Feature Supervoxel-based Spatial Smoothing (F2S3) algorithm to estimate
the 3D displacement vectors. We compared these vectors to sparsely distributed ground truth measurements,
acquired using Global Navigation Satellite System (GNSS) stations. The results showed that, if adequately
spatially averaged over large areas, the 3D vectors can be estimated with an accuracy of a few centimeters
despite the long distances of up to 4 km. This corresponds to an accuracy of a few centimeters for the
displacement magnitude, and a few degrees for the direction (if the magnitude is large enough for a meaningful
estimate of the direction). Herein, we additionally explore several strategies to reduce the uncertainty, where
temporal averaging of multiple consecutive scans from a single epoch proved to be the most promising one,
while vegetation filtering and a careful selection of the registration approach indicated limitations that require
further investigations.
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1 Introduction

Accurately determining deformations from point
clouds remains a significant challenge due to the
complexity of the required data processing algo-
rithms. Over the years, various methods have been
developed, for example, Cloud-to-Cloud Compari-
son (C2C) (Girardeau-Montaut et al., 2005), Piece-
wise Alignment Method (PAM) (Teza et al., 2007),
and Multiscale Model-to-Model Cloud Comparison
(M3C2) (Lague et al., 2013). While these meth-
ods differ in how they determine matching points
and the directions in which distances are calculated,
they all rely on Euclidean-space-based correspon-
dences to estimate displacements. For instance,
M3C2 calculates displacements between correspon-

dences in the Euclidean space along the normal vec-
tors of locally fitted planes. It is thus sensitive to
changes orthogonal to the surface, but insensitive
to displacements parallel to the surface. To address
this, derivatives of M3C2 have been proposed. For
example, Williams et al. (2021) identified a dom-
inant movement direction and computed displace-
ment along it instead of relying on the surface nor-
mal. Despite these improvements, Gojcic et al.
(2021) have previously shown the inherent limita-
tion of methods relying on Euclidean-space corre-
spondences which results in an underestimation of
larger displacements.

To mitigate this, many approaches establish corre-
spondences in feature space rather than Euclidean
space, using hand-crafted or learned feature descrip-
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tors to extract geometric information and match
similar features across point clouds (e.g., Rusu et al.
(2009); Gojcic et al. (2018)). Following this idea,
Gojcic et al. (2020) proposed the Feature to Fea-
ture Supervoxel-based Spatial Smoothing (F2S3) al-
gorithm. F2S3 employs deep-learning-based local
descriptors to extract features and establishes cor-
respondences based on proximity in feature space.
It then computes 3D displacement vectors that cap-
ture changes in unconstrained directions, not only
components orthogonal to the surfaces. Using real-
world data and ground truth displacements from two
landslide monitoring cases with appropriate geo-
metric structure of the point clouds, Gojcic et al.
(2021) demonstrated the superior performance of
F2S3 as compared to C2C and M3C2.

Despite the advancements in estimation algorithms,
a remaining challenge is to quantify the achievable
uncertainty of the displacement estimates. The main
uncertainty sources of TLS point clouds are iden-
tified in previous studies (Soudarissanane, 2016;
Friedli, 2020), but these studies focus on quantify-
ing the quality of point clouds rather than that of dis-
placement estimates. Displacement estimates, how-
ever, depend not only on point cloud quality but
also on the quality of available features and pro-
cessing algorithms. The applied algorithms can in-
troduce additional uncertainty components or miti-
gate some of the existing ones. Some studies (Bar-
barella et al., 2017; Voordendag et al., 2023) have
quantified the uncertainty of final displacement es-
timates, but they are limited to algorithms sensi-
tive to only one-dimensional (1D) analysis, specif-
ically height differences derived from digital eleva-
tion models (DEM) generated from rasterized point
clouds. Hence, there remains a lack of comprehen-
sive information on the achievable quality of three-
dimensional (3D) displacement estimates derived
from TLS point clouds, such as those produced us-
ing the F2S3 algorithm.

This study aims to quantify the uncertainty in F2S3
deformation estimates. Although some preliminary
evaluations exist (Gojcic et al., 2020, 2021), we per-
form an independent and more comprehensive eval-
uation on a new dataset. Specifically, we apply the
F2S3 algorithm to long-range TLS scans collected
in the Swiss Alps and compare the estimated defor-
mations to those obtained from GNSS. Additionally,
we explore selected strategies to reduce uncertainty:
(i) averaging scans or displacement vectors, (ii) fil-

tering out vegetation, and (iii) applying an alterna-
tive registration method. By investigating these fac-
tors, we provide an evaluation of F2S3 performance
and offer practical recommendations for improving
TLS-based deformation monitoring.

In Section 2, we describe the details of the dataset,
the methods, and the metrics used to evaluate F2S3
estimates and to reduce the uncertainty. Section 3
presents the main results, and Section 4 concludes
the study with key findings and implications.

2 Methods

2.1 Data collection

The study area lies in Mattertal, Switzerland, cover-
ing an approximate area of 3 km by 2 km. The lower
areas (about 1500 - 2300 m a.s.l.) are primarily cov-
ered with trees and bushes, while the higher regions
consist mostly of rock debris of various sizes (Fig-
ure 1). The region contains active landslides and
rock glaciers. Further details on the dataset are
available in Medic et al. (2024).

Figure 1. Photo of debris at GNSS station LS12.
The debris scale can be inferred by comparing it
to the researchers in the center. Photo: L. Schmid,
ETH Zurich.

Scans were acquired using a RIEGL VZ-4000 ter-
restrial laser scanner mounted on a heavy-duty tri-
pod on the edge of a stable bedrock across the
valley, see Medic et al. (2024). A meteorological
station was also installed next to the TLS station.
Six epochs of TLS scans were collected: July and
late August 2019, July and September 2021, July
and September 2022. Each epoch contains five to
seven consecutive scans, acquired around 6 PM to
9 AM on the following day to mitigate the influ-
ence of atmospheric refraction (Friedli et al., 2019).
The angular resolution was set to 0.005◦ to balance
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the scan duration and spatial resolution. The dis-
tance between the region of interest and the scanner
ranges from 1.5 to 4 km, and the point spacing varies
from 0.14 to 0.4 m depending on the range.

Several permanently tracking single- and dual-
frequency GNSS stations were available in the re-
gion, installed between 2008 and 2021. The daily
coordinates of these stations have standard devia-
tions between 2 and 4 mm (Moeller et al., 2023).
They are sufficiently accurate to be used as refer-
ence for assessing the accuracy of the TLS-based
deformation estimates which we expected to be on
the order of 1 cm or higher (Medic et al., 2024).

2.2 Data processing

We applied a plane-based ICP registration with six
degrees of freedom (DoF) in RiSCAN Pro. After-
wards, deformations were estimated using the F2S3
algorithm with default parameters (Gojcic et al.,
2021). To evaluate these estimates, we selected
eight GNSS stations in the scanned area with suf-
ficient temporal overlap with the TLS data. These
stations were categorized into three groups based on
the longest time interval for which both GNSS and
TLS measurements are available, as shown in Ta-
ble 1. Since F2S3 provides high-density point-wise
displacement estimates, while GNSS represents sin-
gle points, a direct comparison between GNSS mea-
surements and F2S3 results was not feasible. To ad-
dress this, we assumed rigid-body motion within a
25 m radius of each GNSS antenna. This radius was
chosen to capture general trends near the antenna
and mitigate the noise of the raw F2S3 results while
being small enough to justify the assumption of uni-
form motion.

Table 1. Three groups of GNSS stations based on
the longest time interval for which both TLS and
GNSS data are available.

Time interval Start epoch End epoch Stations
3 years 2019-07 2022-07 BH07, BH12, LS12
2 years 2019-07 2021-07 BH03, LS05
1 year 2021-09 2022-09 BH22, BH23, BH13

Before comparing the F2S3 outputs with GNSS re-
sults, we applied an outlier-removal step to remove
3D vectors with magnitudes greater than 10 m. The
threshold was chosen because prior knowledge of
the study region indicated that most displacements

were within the range of a few meters (Moeller
et al., 2023).

To evaluate the accuracy, we compared the direc-
tions and magnitudes obtained using F2S3 to those
obtained using GNSS. We parameterized the direc-
tions in terms of dip angle and dip direction.

To quantify the precision of the magnitude esti-
mates, the mean absolute deviation (MAD) of the
magnitudes of all F2S3 vectors within the 25 m ra-
dius was calculated. Additionally, we conducted
three trials to reduce the uncertainty in F2S3 esti-
mates. They are described in the following three
subsections.

2.2.1 Averaging multiple scans

The first trial was to average multiple scans acquired
within each epoch. This approach was based on
the following assumptions: (i) the region of interest
is stable within an epoch, (ii) random variations in
scans, such as those caused by instrument instabil-
ity, can be mitigated by integrating multiple scans.

Two averaging strategies were applied. The first
strategy consisted of averaging the point clouds
from each epoch and then estimating the deforma-
tions using the averaged scans. To achieve this, after
merging all original point clouds, a voxel grid with a
0.3 m resolution was created and points within each
voxel were averaged. The selection of the voxel size
is a trade-off between information loss and compu-
tational efficiency. The size of 0.3 m is a compro-
mise between these two extremes and is consistent
with the approximate point spacing of the original
point clouds.

The second strategy consisted of computing F2S3
displacements from all possible single-scan pairs
between two epochs and averaging afterwards. For
example, with four scans from July 2019 and five
from July 2021, 20 F2S3 displacement vectors were
calculated. These vectors were then averaged with-
out weighting to obtain the final vector. To ensure a
fair comparison, each scan was downsampled using
a 0.3 m voxel grid before displacement estimation.

2.2.2 Vegetation filtering

Trees and bushes in the lower regions can nega-
tively impact displacement estimation (Franz et al.,
2016). Canopy growth or wind disturbances may
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cause incorrect correspondences and lead to wrong
estimates. Additionally, complex geometries within
each laser beam footprint in forested areas can cre-
ate mixed pixels and high noise, thus reducing the
point cloud quality and the deformation estimation
accuracy. Therefore, we expect that excluding veg-
etation points may improve the estimation accuracy.

To investigate this, we tested four vegetation filter-
ing methods: the CANUPO classifier (Brodu and
Lague, 2012), Cloth Simulation Filter (CSF) (Zhang
et al., 2016), Simple Morphological Filter (SMRF)
(Pingel et al., 2013), and a pretrained PointNet++
classifier (Qi et al., 2017). We found the PointNet++
classifier was superior in terms of visual quality
scoring and computational efficiency, so we focused
exclusively on this method, herein.

2.2.3 Registration algorithm

Different registration algorithms can introduce dis-
crepancies of a few centimeters in F2S3 distances
on our dataset, and ICP-based methods have shown
strong performance (Laasch et al., 2023). To further
investigate the impact of registration algorithms, we
explored a new method in addition to the initial ap-
proach described in Section 2.2.

The new registration method involved two steps.
First, the point clouds were subsampled, and fea-
tures were extracted using the FPFH descriptor
(Rusu et al., 2009). These were then used with
RANSAC (Fischler et al., 1981) to determine cor-
respondences and compute transformation parame-
ters for an initial alignment. Then, this alignment
was refined using the ICP algorithm (7 DoF) with
the original point clouds. Unlike plane-based ICP,
which requires manual input for initial alignment,
the new method uses RANSAC, potentially reduc-
ing the sensitivity of the displacement estimation
with respect to the quality of the initial alignment.

3 Results and Discussion

In this section, we present the results of the uncer-
tainty quantification. Then we discuss the results of
three methods for potential reduction of the uncer-
tainties.

3.1 Uncertainty of F2S3 results

F2S3 results within a 25 m radius of eight GNSS
stations, estimated from different time intervals (Ta-
ble 1), were compared with GNSS observations as
described in Section 2.2. The comparison results
are listed in Table 2. Except for station LS05, the
F2S3 estimates align well with the GNSS measure-
ments. The median dip angle difference is 3◦, me-
dian dip direction difference is 5◦, and median dis-
placement difference is 0.05 m. A large MAD oc-
curred at BH22, the station farthest from the laser
scanner, where poor feature quality left only 30
points for F2S3 analysis, leading to higher uncer-
tainty in the estimates. Overall, the differences be-
tween the F2S3 and GNSS results align with pre-
vious findings (Gojcic et al., 2021), reaffirming the
effectiveness of the F2S3 algorithm for deformation
monitoring of landslides.

Angular difference and deformation magnitude are
negatively correlated: Larger F2S3 displacements
correspond to smaller angular differences with
GNSS results. This occurs because F2S3 estimates
3D displacement vectors without explicit directional
information, making angular deviations dependent
on magnitude. When displacements are large, esti-
mation errors have less impact on direction, leading
to more accurate angular estimates. However, quan-
tifying this relationship is beyond this study’s scope.

The exception was station LS05, where F2S3 esti-
mated a displacement of 1.89 m, while the GNSS
measurement indicated 9.42 m. At this station, the
GNSS time series showed a sudden jump of 6.04 m
on May 12th, 2020 (Figure 2). Additionally, in-
homogeneous deformation patterns were observed
in the neighborhood of LS05, see Figure 3. The
rigid-body motion assumption does not hold here,
with the eastern area moving slower than the west-
ern part. Moreover, gaps in the F2S3 results next to
the antenna suggest excessive deformation in these
areas, such that F2S3 failed to find correspondences,
see also Moeller et al. (2023). No evidence suggests
mistakes in GNSS or TLS measurements, so we
attribute the discrepancy to the difference between
the point-wise character of GNSS results versus the
areal one of TLS. Further investigation is ongoing.
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Table 2. Quantitative assessment of displacements estimated using GNSS and F2S3, where φ is the dip angle,
α the dip direction, d the displacement magnitude, and ∆ the difference between F2S3 and GNSS results.

Station F2S3 points φGNSS (◦) αGNSS (◦) φF2S3 (◦) αF2S3 (◦) |∆φ | (◦) |∆α| (◦) dGNSS (m) dF2S3 (m) |∆d| (m) MAD (m)
LS12 7206 47 -114 38 -112 9 2 0.93 0.89 0.05 0.19
BH07 275 20 -115 22 -121 2 6 1.12 1.23 0.10 0.22
BH12 2140 23 -111 26 -113 3 2 0.81 0.86 0.05 0.19
BH03 4883 29 -112 32 -117 3 5 0.39 0.43 0.04 0.19
LS05 6556 39 -98 42 -86 3 12 9.42 1.89 7.53 0.95
BH22 30 36 -115 34 -120 2 5 0.45 0.47 0.02 1.97
BH23 439 19 -115 5 -99 14 16 0.23 0.27 0.04 0.20
BH13 411 22 -86 19 -86 3 0 4.66 4.58 0.08 0.32
Median (excl. LS05) - - - - 3 5 - - 0.05 0.20

Figure 2. GNSS (blue) and TLS (orange) displace-
ments at station LS05, with interpolated TLS dis-
placement (dashed orange line) shown as a refer-
ence, not representing actual data.

The median MAD of the F2S3 distance estimates is
0.20 m, indicating that the typical level of variation
in F2S3 estimates is around 0.20 m. Stations with
more F2S3 points in the neighborhood tend to have
smaller MAD values. Analysis of the original point
clouds shows that the number of F2S3 points largely
depends on the acquired number of points around a
station. Higher point densities better capture local
features, producing more matched pairs and more
precise deformation estimates. Our results suggest
that original point density directly influences dis-
placement estimate quality, though further investi-
gation is needed to establish a direct relation.

3.2 Influence of averaging strategies

We can improve the accuracy and precision of the
F2S3 results by estimating deformations from aver-
aged scans. Table 3 shows results from scans aver-
aged before correspondence search (Section 2.2.1).
For simplicity, the analysis focuses only on magni-
tude estimates. Compared with non-averaged scans,
averaging multiple scans improved the mean accu-
racy of the F2S3-based magnitudes from 0.05 m to
0.04 m, and the median precision from 0.20 m to
0.16 m. For most stations, the MAD decreased to
between 0.16 m and 0.18 m, indicating improved

Figure 3. Visualization of F2S3 displacement vec-
tors within 25 m of station LS05, compared to the
GNSS displacement vector.

precision of individual per-point magnitude esti-
mates. These subtle but noticeable improvements
in both accuracy and precision are due to reduced
noise and reduced impact of quasi-random system-
atic effects (e.g. refraction and instrument instabil-
ity) achieved through simple scan averaging.

An alternative approach, averaging F2S3 displace-
ments after estimation, was also tested and the re-
sults are presented in Table 4. Comparing Tables
3 and 4, both strategies achieved similar accuracy.
However, the second strategy resulted in worse pre-
cision, increasing the median MAD from 0.16 m to
0.22 m. Moreover, it required 20 times more com-
putation time. These results suggest that averaging
after displacement estimation is both inefficient and
less effective in reducing uncertainty.
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Table 3. F2S3 magnitude estimation from averaged
point clouds. Symbols are defined as in Table 2.

Station dF2S3 (m) |∆d| (m) MAD (m)
LS12 0.89 0.05 0.18
BH07 1.18 0.05 0.16
BH12 0.83 0.02 0.17
BH03 0.43 0.05 0.16
BH22 0.43 0.02 0.16
BH23 0.25 0.02 0.16
BH13 4.66 0.09 0.40

Median - 0.05 0.16

Table 4. F2S3 magnitude estimation from averaged
displacements. Symbols are defined as in Table 2.

Station dF2S3 (m) |∆d| (m) MAD (m)
LS12 0.89 0.04 0.20
BH07 1.19 0.06 0.22
BH12 0.83 0.02 0.20
BH03 0.42 0.04 0.20
BH22 0.45 0.00 0.25
BH23 0.25 0.02 0.24
BH13 4.70 0.13 0.38

Median - 0.04 0.22

3.3 Influence of vegetation filtering

The results of vegetation filtering are shown in Fig-
ure 4, where green points represent vegetation and
gray points indicate ground. While the pre-trained
PointNet++ model effectively removed most vege-
tation in the lower part of the point cloud, it tended
to misclassify vegetation in the upper region. This
likely resulted from non-uniform point density and
higher signal-to-noise ratio in the upper region,
which had larger distance from the scanner. Exclud-
ing these misclassified points led to unnecessary in-
formation loss, impairing deformation monitoring
in debris-covered areas.

Vegetation filtering also introduced artifacts in the
displacement estimates on lower forested slopes, as
shown in Figure 4. The circular patterns shown by
the colors indicate unrealistic deformation estimates
caused by misaligned data gaps. These gaps re-
sult from differences in vegetation point removal be-
tween point clouds. A potential solution to fix these
gaps could involve smart interpolation, but further
exploration is beyond the scope of this paper.

3.4 Influence of registration methods

We applied two registration methods separately (see
Section 2.2.3 for details) to assess the sensitivity
of deformation estimate quality to small registra-
tion changes and identify the superior method. The

Figure 4. (a) Vegetation filtering results for the
2022-09 epoch, with vegetation (green) and ground
(gray). (b) Zoomed-in view of F2S3 results (2019-
07 to 2022-09) after vegetation filtering for the area
within the red box.

plane-based ICP method reduces noise through lo-
cal plane estimation, while the RANSAC-integrated
ICP method mitigates local minima during the
transformation parameter search.

F2S3 results from both methods are compared in
Table 5. For a comprehensive comparison, we in-
vestigated both angular and magnitude estimates.
F2S3 yielded similar accuracy in angular differ-
ences for both methods. However, scans regis-
tered using the RANSAC-integrated ICP method
showed slightly smaller magnitude differences rel-
ative to GNSS and lower MAD values. Specifically,
the median magnitude difference for the RANSAC-
integrated ICP registration was 0.03 m, compared to
0.05 m for the plane-based ICP method, while the
median MAD of F2S3 magnitudes was 0.19 m ver-
sus 0.20 m. These findings suggest both registra-
tion methods perform similarly, with each aligning
results better with GNSS reference data for some
areas. The results reaffirm that high-quality regis-
tration is key to achieving high-quality deformation
estimates.

4 Conclusion

In this study, we utilized the F2S3 algorithm to
estimate deformations from long-range TLS scans
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Table 5. F2S3 results from different registration algorithms. Symbols are defined as in Table 2.
RANSAC + ICP Plane-based ICP

Station |∆φ | (◦) |∆α| (◦) |∆d| (m) MAD (m) |∆φ | (◦) |∆α| (◦) |∆d| (m) MAD (m)
LS12 9 2 0.06 0.17 9 2 0.05 0.19
BH07 2 6 0.05 0.21 2 6 0.10 0.22
BH12 2 2 0.01 0.19 3 2 0.05 0.19
BH03 3 6 0.00 0.19 4 5 0.04 0.19
BH22 5 4 0.10 0.19 2 6 0.02 1.97
BH23 16 15 0.01 0.18 14 16 0.04 0.20

Median 4 5 0.03 0.19 4 6 0.05 0.20

acquired in a Swiss Alpine region and quantified
the achievable accuracy and precision. Our results
show that in long-range geomonitoring (up to 4 km)
with an average point spacing of 0.3 m, displace-
ment magnitudes can be estimated with an accuracy
of 5 cm and individual per-point precision of about
0.2 m. Displacement direction estimates depend on
magnitudes but can be accurate to within a few de-
grees if the magnitude exceeds about 30 cm.

We further explored the possibilities to reduce the
uncertainty. Averaging scans before displacement
estimation improved the accuracy and precision
slightly but noticeably, while averaging after dis-
placement estimation did not improve the quality
but significantly increased the computational bur-
den. Although this investigation is not comprehen-
sive enough for a general conclusion, it suggests that
averaging multiple scans can benefit displacement
estimation in geomonitoring and should be further
investigated.

In the present case, vegetation filtering introduced
data gaps, causing artifacts in the deformation es-
timates rather than improving quality. Smart inter-
polation of missing ground data might be required.
Two ICP-based registration methods, plane-based
ICP and RANSAC-integrated ICP, achieved simi-
lar accuracy and precision in deformation estimates.
The results confirm the importance of high-quality
registration in reducing uncertainties in estimated
displacements.

A primary limitation of the quality assessment car-
ried out within this study is the assumption of rigid-
body motion within the spherical neighborhood of
50 m diameter around each GNSS station. While
this assumption holds for most of the analyzed ar-
eas, notable exceptions, such as station LS05, high-
light potential biases in the deformation estimates
and assessment results where this assumption is vi-
olated. We will work on algorithms that better deal

with locally inhomogeneous motion patterns, both
for the estimation of displacement vector fields and
for quality assessment.
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