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Abstract

For many situations in deformation analysis, data are collected that not only enter the usual observation vec-
tor y, but also the coefficient matrix A after linearization. Such models fall into the category of Errors-In-
Variables (EIV) Models and may be treated by Total Least-Squares (TLS) adjustment. Moreover, if the defor-
mation as described by the parameters ξ follows certain “expectations” that can be quantified, the normally
non-random parameters will turn into “random effects” x, in which case the standard estimation procedure
needs to be replaced by one that resembles collocation, but is here obviously based on the TLS principle. Ear-
lier studies involved only a non-singular combination of the observation covariance matrices; these include
Schaffrin (2009), Snow and Schaffrin (2012), and Schaffrin (2020). A more general treatment was developed
by Snow (2012) in his PhD dissertation and has been further extended in Snow and Schaffrin (2025) for the
case where the combination of covariance matrices turns out to be singular. Here, an algorithm is presented
and applied to a problem in deformation analysis.
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1 Introduction

Certain problems with measurement variables ap-
pearing in both the observation vector y and the
coefficient matrix A, and that also include stochas-
tic prior information for the unknown parameters,
are perhaps best treated by the errors-in-variables
with random effects model (EIV-REM). As the name
suggests, the model is formed by combining the
EIV model (cf. Snow, 2012 and Jazaeri et al., 2014)
with the REM (cf. Schaffrin, 2001) in a suitable
way.

It may be insightful to briefly reflect on certain sig-
nature characteristics of the REM and EIV mod-
els individually before focusing on their combina-
tion into a single model. That was done by Schaf-
frin (2020) who characterized respective REM and
EIV models in relationship to the classical Gauss-
Markov Model (GMM). There, he described the
REM as a model that strengthens the parameters

through the introduction of stochastic prior infor-
mation, and he called the least-squares solution
within the REM least-squares collocation follow-
ing Moritz (1970). In contrast, he characterized the
EIV model as one that weakens the coefficient ma-
trix of the parameters by allowing it to contain ob-
served data rather than only fixed entries, hence the
often used term “data matrix.” In this case, he called
the associated least-squares estimation technique to-
tal least-squares (TLS) estimation. Schaffrin (2020)
nicely illustrated these relationships through a dia-
gram that had been presented in an earlier workshop
(Schaffrin, 2009) and is repeated in Fig. 1 herein.

Building on the work of Schaffrin (2009), for exam-
ple, Snow (2012, §5.2.1) developed a more general
EIV-REM model that allowed correlation between
data in the observation vector and the data matrix.
Moreover, the cofactor (scaled covariance) matrices
for those data were allowed to be singular (i.e., pos-
itive semidefinite) as long as a certain combination
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Figure 1. The most informative model (REM) is at the top; the least informative model (EIV) is at the bot-
tom. Like the GMM, the EIV-REM is formed at the intermediate level (in terms of the information it in-
cludes), but it belongs to the “nonlinear world,” where nonlinear normal equations are formed and subse-
quently solved by iteration. The directions of the arrows are consistent with the statements adjacent to them.

of them—defined in (9b) below as Q1—turned out
to be nonsingular. In the following, we generalize
Snow’s work further to handle the case where the
matrix Q1 is singular. The Kronecker-product struc-
ture of Schaffrin (2020) for QA in (1c) below is also
no longer required.

The remainder of the paper is organized as fol-
lows: Section 2 defines the EIV-REM in detail and
presents a thorough collection of formulas for the
prediction of the model parameters and the adjust-
ment residuals based on Snow and Schaffrin (2025).
It also provides a compact algorithm for computer
code and briefly discusses some points about it be-
fore section 3 presents an example in a variety of
case settings. Finally, section 4 summarizes the con-
tributions of this paper and notes some outstanding
questions that are the focus of our ongoing work.

2 Formula collection

As noted above, certain problems with measure-
ment variables appearing in both the observation
vector y and the coefficient matrix A are perhaps
best treated by the errors-in-variables with random
effects model (EIV-REM) when stochastic prior in-
formation is available for the parameters. Such a

model is formed by combining the EIV model (cf.
Snow, 2012; Fang, 2013; and Jazaeri et al., 2014)
with the REM (cf. Schaffrin, 2001), viz.

y
n×1

= (A−EA)︸      ︷︷      ︸
n×m

x+ ey, (1a)

β0 = x+ e0, (1b)ey

eA

e0

∼ (

0
0
0

 ,σ2
0

[
Q 0
0 Q0

]
B σ

2
0

 Qy QyA 0
QAy QA 0
0 0 Q0

).
(1c)

The equations in (1a) are often called observation
equations; (1b) provides prior information for the
unknown, random parameters x, and (1c) expresses
the distribution of the unknown, random errors ey,
eA B vecEA, and e0. The terms in (1) are defined
more specifically as follows:

y is an n×1 vector of observations (“data vector”).

A is an n×m matrix of random variables (“data ma-
trix”), possibly containing some fixed (known)
elements, for which variances and covariances
are set to zero.

EA is an n×m matrix of unknown random errors
associated with the data in A.

2



6th Joint International Symposium on Deformation Monitoring (JISDM) 7.-9. April 2025, Karlsruhe, Germany

x is an m×1 vector of unknown random parameters
(random effects, aka “signal”).

ey is an n×1 vector of unknown random errors as-
sociated with the data vector y.

β0 is a given m×1 vector of prior information.

eA is the vectorial form of EA (i.e., eA B vecEA)
with size nm×1.

e0 is an m×1 vector of unknown random errors as-
sociated with the prior information.

σ2
0 is an unknown variance component.

Qy is a given n × n symmetric, positive
(semi)definite cofactor matrix for ey.

QA is a given nm × nm symmetric, positive
(semi)definite cofactor matrix for eA.

QyA is a given n×nm matrix that accounts for cor-
relations, if any, between the data in y and A,
with QT

yA = QAy.

Q0 is a given m × m symmetric, positive
(semi)definite cofactor matrix for e0.

The model as presented does not allow for corre-
lations between the observation equations and the
prior information, as they commonly come from dif-
ferent, and entirely independent, sources. Neverthe-
less, it does admit much more general cofactor ma-
trices than the form shown in Schaffrin and Snow
(2013), who focused their attention there to mean
squared error risk.

It is noted that both the coefficient (data) matrix A
and the cofactor matrix Q0 for the prior informa-
tion could be rank deficient, as long as the matrix
[AT |Q0] has full row rank m. Thus, the model re-
dundancy r is defined by

rB n− rk[AT |Q0]+ row-dim(x) = n−m+m = n,
(2)

assuming rkA = rk(A−EA).

Total least-squares collocation Assuming mo-
mentarily that the cofactor matrix Q is nonsingu-
lar, we define a weight matrix P for the observation
equations (1a) as

PB Q−1 =

[
Qy QyA

QAy QA

]−1

=

[
P11 P12
P21 P22

]
. (3)

Further assuming, momentarily, that the cofactor
matrix Q0 is non-singular, the predictor x̃ of the un-
known vector of random effects x can be derived
from the principle of Total Least Squares (TLS) as
shown in Snow (2012). Starting with the statement

eT
y P11ey +2eT

y P12eA + eT
AP22eA + eT

0 Q−1
0 e0 = min

(4)
and subjecting it to the model (1), allows formation
of the Lagrange target function

Φ(ey,eA,e0,λ) = eT
y P11ey +2eT

y P12eA+

+ eT
AP22eA + eT

0 Q−1
0 e0 +2λT (y−Aβ0− ey+

+
(
βT

0 ⊗ In
)
eA +Ae0−EAe0

)
= stationary, (5)

where λ is an n× 1 vector of Lagrange multipliers
to be estimated.

Forming the Euler-Lagrange (or first-order) neces-
sary conditions results in the set of normal equations

P11ẽy +P12ẽA − λ̂= 0, (6a)

P21ẽy +P22ẽA +
(
β0⊗ In

)
λ̂−

(
ẽ0⊗ In

)
λ̂= 0,

(6b)

Q−1
0 ẽ0 +AT λ̂− ẼT

A λ̂= 0, (6c)

y−Aβ0− ẽy + ẼAβ0 +(A− ẼA)ẽ0 = 0. (6d)

After some algebraic manipulations, following
Snow (2012, pp. 43–44), predictions of the un-
known random errors ey and eA (residuals), ex-
pressed in terms of the cofactor matrices and the
estimated vector of Lagrange multipliers λ̂, are pro-
vided by

ẽy =
{
−QyA

[
(β0− ẽ0)⊗ In

]
+Qy

}
λ̂, (7)

ẽA =
{

QAy−QA
[
(β0− ẽ0)⊗ In

]}
λ̂, (8)

with ẼA = Invec ẽA. Here, the Invec operator re-
verses the operation of the vec operator by reshap-
ing its argument back to the size of the argument in
the original vec operation.

For compactness, we substitute x̃ for β0− ẽ0 and,
following Snow and Schaffrin (2025), arrive at the
estimated Lagrange multipliers

λ̂= Q−1
1 (y−Ax̃) if Q−1

1 exists, (9a)

with the n×n matrix Q1 defined by

Q1 :=
[
Qy−QyA(x̃⊗ In)− (x̃⊗ In)

T QAy+

+(x̃⊗ In)
T QA(x̃⊗ In)

]
. (9b)
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For the case where Q1 turns out to be singu-
lar, we introduce an m × m symmetric, positive
(semi)definite matrix S and use it to define the n×n
matrix

Q3 :=
[
Q1 +

(
A− ẼA

)
S
(
A− ẼA

)T ]
= Q3(x̃, λ̂),

(10)
which is non-singular if the rank condition
rk[Q1,(A− ẼA)S] = n holds.

We note the relationship ẽ0 = β0− x̃ and write the
following two equation for the prediction of x, as in
Snow and Schaffrin (2025):

x̃ = β0 +
[
(A− ẼA)

T Q−1
3 (A− ẼA)(Q0−S)Q−1

0 +

+Q−1
0

]−1
(A− ẼA)

T Q−1
3

(
y−Aβ0 + ẼAẽ0

)
,

(11)

x̃ = β0 +Q0
[
Im +(A− ẼA)

T Q−1
3 (A− ẼA)·

·(Q0−S)
]−1

(A− ẼA)
T Q−1

3

(
y−Aβ0 + ẼAẽ0

)
.

(12)

Obviously, (11) requires Q0 to be nonsingular,
whereas (12) can be used for singular or nonsingu-
lar Q0. Incidentally, if S = 0, implying that Q1 is
nonsingular, then (10) to (12) reduce to equations
(5.24)–(5.25b) of Snow (2012). On the other hand,
if the choice SB Q0 keeps

Q30 :=
[
Q1 +

(
A− ẼA

)
Q0

(
A− ẼA

)T ] (13)

invertible, the formulas (11) and (12) can be further
simplified to

x̃ = β0+Q0(A− ẼA)
T Q−1

30

(
y−Aβ0+ ẼAẽ0

)
, (14)

while the corresponding residual vector would then
read

ẽ0 =−Q0(A− ẼA)
T Q−1

30

(
y−Aβ0 + ẼAẽ0

)
= β0− x̃.

(15)

After prediction of the random errors and estimation
of the Lagrange multipliers, the total sum of squared
residuals (TSSR), denoted herein by Ω, can be com-
puted by

Ω =
[
ẽT

y , ẽT
A
][P11 P12

P21 P22

][
ẽy

ẽA

]
+ ẽT

0 Q−1
0 ẽ0 = (16a)

= λ̂T (Q1 +(A− ẼA)Q0(A− ẼA)
T )λ̂= (16b)

= λ̂T Q30λ̂. (16c)

It is sometimes the case that columns of the data
matrix A are fixed, resulting in a singular cofactor

matrix Q in the EIV model (1), in which case the
partitioned weight matrix in (16a) would not even
exist, though Q1 always exists and may still be reg-
ular. Nevertheless, (16b) can still be used to com-
pute the TSSR, even if the cofactor matrix Q0 for
the prior information is singular, too. In any case,
a suitable formula for estimating the unknown vari-
ance component σ2

0 shown in (1c) is provided by

σ̂
2
0 = Ω/n, (17)

where n is the model redundancy according to (2).

An algorithm for numerical computations Al-
gorithm 1 below can be considered for numerical
computations. It is straight forward and can easily
be compared to the formulas developed in the previ-
ous section. Note that the use of zero in superscripts
denotes an initial value or a value from the previous
iteration, and use of a left arrow denotes that the
variable on the left is to be initialized or updated to
the values contained in the variable on the right. A
more detailed list of comments about the algorithm
can be found in Snow and Schaffrin (2025).

3 Example

In order to highlight the utility of the presented al-
gorithm, we apply it here to a problem of estimating
the two-dimensional (2D) strain tensor of a body un-
dergoing homogeneous deformation. Such a body
may be natural, e.g., the crust of the earth, or man-
made, e.g., a bridge or a dam. In any case, the
deformation phenomenon is often realized from the
change in estimated coordinates, of monuments an-
chored to the body, between two epochs of time suf-
ficiently separated to allow for deformation during
the time interval. The coordinates are most often ob-
tained from a free network adjustment of surveying
measurements.

In 2D, a network datum is specified by a scale, one
orientation, and two origin parameters. In a free
network adjustment, the observations do not carry
sufficient information to completely define the net-
work’s datum, and thus the network has a datum de-
fect. For example, if data for a 2D network is com-
prised of only distance and direction observations,
a datum defect of three occurs, since those obser-
vations supply no information about the origin or
orientation of the network.
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Algorithm 1 TLS Collocation
Given:

1: Model variables y, A, β0, Qy, QA, Q0;
2: Optionally provide QyA = 0, S = Im, δ = 1.0×

10−12 (with reasonable default values shown)
Initialize:

3: x̃(0)← β0, ẽ(0)0 ← 0m, Ẽ(0)
A ← 0, λ̂(0)← 0n

4: Q =
[

Qy QyA
QAy QA

]
5: ∆x̃ = 1m

6: while ∥∆x̃∥> δ do
7: BB

[
In −(x̃(0)⊗ In)

T
]
, Q1 = BQBT

8: if rankQ1 < n then
9: Q3 = Q1 +(A− Ẽ(0)

A )S(A− Ẽ(0)
A )T

10: R← inverse of Cholesky factor of Q3
11: else
12: R← inverse of Cholesky factor of Q1
13: end if
14: W B RRT , being the inverse of Q1 or Q3

15: Z B (A− Ẽ(0)
A )TW

16: ẽ0 = −Q0
[
Im +Z(A− Ẽ(0)

A )(Q0−S)
]−1Z ·

(y−Aβ0 + Ẽ(0)
A · ẽ

(0)
0 )

17: x̃ = β0− ẽ0
18: if rankQ1 = n then λ̂=W (y−Ax̃)
19: else if Q0 is singular then
20: λ̂=W

{
y−Ax̃+(A−Ẽ(0)

A )S[(A−Ẽ(0)
A )T λ̂(0)]

}
21: else λ̂=W [(y−Ax̃)− (A− Ẽ(0)

A )SQ−1
0 ẽ0]

22: end if
23: ẽA = [QAy−QA(x̃⊗ In)]λ̂, ẼA = Invec(ẽA)

24: Update: ∆x̃ = x̃− x̃(0), x̃(0) ← x̃, ẽ(0)0 ←ẽ0,
Ẽ(0)

A ← ẼA, λ̂(0)← λ̂
25: end while
26: Perform a check of the model by confirming

that equations (6c) and (6d) are satisfied.

Furthermore, a free network adjustment yields a
minimum bias of estimated coordinates while also
providing unique observation residuals. It does so
by minimizing changes in some or all of the coordi-
nates from their given values (minimum Euclidean
norm). Consequently, it also yields a singular co-
variance matrix for the estimated coordinates that
has a rank deficiency usually equal to the datum de-
fect of the network. The singular covariance matrix
is then to be used in the subsequent estimation of
the deformation strain tensor as described below.

The observation equations of point coordinates from
two independent epochs expressed as a function of

strain-tensor elements and other parameters have
been presented by various authors, including Brun-
ner et al. (1981), Caspary (2000), and Nkuite
(1998). For the ith point of n/2 points, at each of
two epochs denoted 1 and 2, having estimated coor-
dinates (x1i,y1i) and (x2i,y2i), respectively, the ex-
pectation of the observation equation in matrix form
reads

E{
[

x2i− x1i

y2i− y1i

]
}=E{

[
x1i 0 y1i −y1i 1 0
0 y1i x1i x1i 0 1

]
}·E{x},

(18)
where E denotes expectation, and the elements in
the 6× 1 vector of unknown random effects x B
[εxx εyy εxy ω tx ty]T are defined as follows: εxx and
εyy are extensional strains along the x and y axes,
respectively; the effect of εxy is called shear strain;
ω is a rotation angle; and tx and ty are translation
parameters along the the x and y axes, respectively.
According to Caspary (2000, p. 137), the quantity
2 · εxy “is equivalent to the angular distortion of a
right angle which was originally parallel to the axes
of the coordinate system.”

For all n/2 points, the vector on the left side of (18)
extends to size n×1 and the matrix on the right side
to size n×m, m = 6. These quantities are the obser-
vation vector y and data matrix A, resp., of (1a).

Let V1 and V2 denote the singular covariance matri-
ces from free network adjustments at epoch 1 and 2
for the coordinates appearing in (18). Then the co-
factor matrix Q appearing in the model (1) is defined
as follows. Define the 2×2 matrices

B1 B

[
1 0
0 0

]
, B2 B

[
0 0
0 1

]
, B3 B

[
0 1
1 0

]
,

B4 B

[
0 −1
1 0

]
, B5 = B6 B

[
0 0
0 0

] (19)

and, with pB n/2, the following six n×n (sparse)
matrices

Ci B Ip⊗Bi, i = 1, . . . ,6, (20)

so that finally we can write

QB

 V2
n×n

0
n×6n

0
6n×n

0
6n×6n

+[
−In CT

1 CT
2 CT

3 CT
4 CT

5 CT
6

]T ·

·V1 ·
[
−In CT

1 CT
2 CT

3 CT
4 CT

5 CT
6

]
. (21)

Note that the last 2n rows and columns are zero, ow-
ing to the last two columns of the data matrix A be-
ing fixed, and that QyA is nonzero.
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Table 1. Simulated strain-field parameters for gen-
erating coordinates at epoch 2 shown in Table 2

Quantity Value ± Noise Unit

εxx −5.5×10−6 1.0×10−6 strain
εyy 4.5×10−6 0.5×10−6 strain
εxy 4.5×10−6 0.9×10−6 strain
ω 0.0 3.0×10−2 grad
tx 0.1 0.013 m
ty 0.0 0.013 m

Numerical example Our numerical example is
adapted from Caspary (2000, section 10.11), where
we selected the following eight points from his net-
work, being among those that belong to the part of
the network considered to be undergoing deforma-
tion: 13, 15, 17, 19, 35, 37 45, 47. Coordinates
for the points at epoch 1 are taken from Caspary’s
Table 10.9. Coordinates for epoch 2 were obtained
by simulating the deformation field using values in
column 2 of Table 1 (also appearing in Caspary’s
Table 10.12). Noise was added to those values us-
ing a uniform pseudorandom distribution over the
range of negative to positive values shown in col-
umn 3 of the same table. Additional pseudorandom
noise over the interval±2cm was also added to sim-
ulate variances associated with a second measure-
ment campaign.

The resulting coordinates used for the analysis
herein are shown in Table 2 below to the exact pre-
cision used. We obtained a covariance matrix, V1,
for the points by adjusting all observations of Cas-
pary’s Tables 10.8a and 10.8b associated with the
mentioned eight points. Those data involve only
distance and direction observations. Thus the result-
ing 16×16 covariance matrix V1 for the coordinates
has a rank of 13, corresponding to a network datum
defect of three. To keep things simple, we used the
same covariance matrix for both sets of coordinates,
so that Qy = 2V1, and QA and QyA are as reflected in
(21). The upper-triangular portion of the covariance
matrix V1 is given in Table 5 to the same precision
used in our analysis.

In practice, prior information may come from a pre-
vious estimation process, a publication by an au-
thoritative agency, or some other source, depending
on the problem at hand. In some cases, it might even
be based on past experience or a hunch; especially
for the variances if they are not readily available.

Table 2. Point numbers and coordinates in meters
for epoch 1 and differences between epochs.

No. x1 y1 x2− x1 y2− y1

13 −15350.0270 15659.9289 3.8120 3.4851
15 −18220.0625 −7150.0583 −1.4687 4.0274
17 −46450.0713 −15850.0411 −3.3303 10.2741
19 −68270.0590 2829.9345 1.0754 15.2358
35 −24130.0146 33609.9813 8.0043 5.5251
37 −35500.0516 6059.9617 1.6909 7.9572
45 −35850.0108 44120.0219 10.5022 8.2131
47 −49930.0410 25210.0489 6.1709 11.2541

Cases of prior information (p.i.) Below we
present the results of four cases of prior information.
Except in case 4, the vector of prior information β0
is taken from column 2 of Table 1. The covariance
matrix Q0 is diagonal and nonsingular, but it varies
from case to case as described below. In contrast,
the same matrix S was used in all cases, defining it
as a diagonal matrix with the squares of the values
in column 3 of Table 1 for its diagonal elements.

For numerical stability, we scaled the coordinates
and the translation parameters of the prior informa-
tion by 1.0× 10−3 (essentially converting them to
units of km) for the adjustment, while leaving their
respective covariance matrices in units of squared
meters. This scaling required the variances of the
non-translation parameters appearing in Q0 to be
scaled by 1.0× 106 to maintain a consistent ratio
of variables to their variances. The residuals were
then scaled by 1.0× 103 after the adjustment (con-
verting them back to meters) for computation of the
TSSR according to (16b). Alternatively, we could
have achieved a similar level of numerical stabil-
ity by scaling the cofactor matrices Q and Q0 by
1.0×106 and leaving the coordinates in units of me-
ters.

Case 1 For comparison purposes, no prior informa-
tion is used. The problem is solved by TLS
within the EIV model using algorithm 3 of
Snow (2012).

Case 2 The diagonal elements of Q0 are the squares
of the values listed under case 2 in Table 3.
Here the variances are increased to very large
values, thereby greatly reducing the influence
of the prior information.

Case 3 The diagonal elements of Q0 are the squares
of the values listed under case 3 in Table 3.
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Here the variances are decreased to very small
values, thereby causing the prior information
to dominate the prediction of x.

Case 4 The diagonal elements of Q0 are the squares
of the values listed under case 4 in Table 3.
However, in this case the prior information for
the strain parameters is modified to εxx =−7×
10−6 and εyy = εxy = 3×10−6. This was done
to see the relative influence of the observations
and prior information different than that used
to simulate the coordinates of epoch 2.

Table 3. Square roots of the six diagonal elements
of Q0 (i.e., SDs) for various cases of p.i. The units
for the first three rows are strain. The units for
row 4a are radians; they are converted to grad in
row 4b for illustrative purposes, where 200grad =
π radians. The units for rows 5 and 6 are meters.
Scaling of the first four rows by 1.0×106 as noted
in the discussion above about numerical stability is
reflected here.

Case 2 Case 3 Case 4

1 1.0×10−1 1.0×10−8 1.0×10−3

2 1.0×10−1 0.5×10−8 1.0×10−3

3 1.0×10−1 0.9×10−8 1.0×10−3

4a 6.283185 1.57×10−4 1.570796
4b 4.0×102 1.0×10−2 1.0×102

5 1.0×103 1.3×10−2 1.0
6 1.0×103 1.3×10−2 1.0

The numerical results of the four cases are shown in
Table 4. Again, case 1 is merely shown for compar-
ison purposes.

Discussion Not surprisingly, case 2 matches
case 1 almost exactly. This is to be expected,
since the prior information has been drastically de-
weighted, and thus it has virtually no influence on
the prediction of x. In contrast, case 3 completely
replicates the prior information for the strain pa-
rameters. This is also to be expected, since the
weights (inverses of variances) have been magni-
fied so greatly that the prior information completely
dominates the prediction of x. The model check—
norm of (6d)—is much larger than the other cases.
Perhaps the tiny values in Q0 make the system less
stable. Nevertheless, the larger value may still be
acceptable given the noise level of the data. Like-
wise, the tiny values in Q0 have greatly magni-
fied the TSSR, though the residuals themselves (not

shown herein) still look reasonable. Note that the
other parameters can also be driven to their given
values by further decreasing their variances a few
orders of magnitude, but doing so drives the TSSR
and model check to much higher values.

Case 4 differs from the others in that the prior in-
formation in β0 has been modified from the simu-
lated values as noted above. For context, we note
that the typical value on the diagonal of Qy is about
(0.035m)2. Note that the observational data would
tend to pull εxx towards−4.54 µ-strain, whereas the
prior information would pull it towards−7 µ-strain.
Table 4 does show a more-or-less middle value of
−6.12 µ-strain, reflecting a balance between the ob-
servational data and the prior information when rea-
sonable weights are assigned.

4 Conclusions

The formulas developed by Snow and Schaffrin
(2025) for predicting the vector of random effects x
within the EIV model with prior information via to-
tal least-squares collocation represent a more gen-
eral treatment than what has been presented previ-
ously, in that the combined cofactor matrix Q1 can
now be singular. An algorithm for the numerical so-
lution of the problem has been presented and tested
on a simulated deformation problem. It behaves as
expected when the cofactor matrix Q0 for the prior
information takes on extreme values, and it appears
to strike a good balance between the influence of the
observational data and the prior information when
those components of the model are more realisti-
cally weighted.

In any case, future work should consider the case
where prior information is only available for part
of the unknown parameters, so that only some el-
ements of the parameter vector become random.
Also, the mean square error matrix for the predic-
tion of x needs to be developed so that the accu-
racy of the prediction can be better characterized,
though this will likely prove difficult due to the non-
linear nature of the normal equations, just as it has
for deriving the dispersion matrix for the total least-
squares estimate of the unknown (fixed) parameters
within the EIV model.
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Table 4. Solutions of four cases. Case 1 uses no prior information (p.i.). Cases 2 and 3 take their p.i. from
column 2 of Table 1. For case 4, p.i. is modified so that εxx = −7× 10−6 and εyy = εxy = 3× 10−6, while
the other terms remain unchanged. Units of cc-grad mean 1.0× 10−4 grad, where 200grad = π radians. The
convergence criterion was set to δ = 1.0×10−10. Model check refers to the norm of (6d).

Quantity Case 1 Case 2 Case 3 Case 4

ε̃xx [µ-strain] −4.541 −4.541 −5.500 −6.122
ε̃yy [µ-strain] 4.845 4.845 4.500 3.385
ε̃xy [µ-strain] 4.036 4.036 4.500 3.794
ω̃ [cc-grad] −144.740600 −144.740599 −144.730133 −144.767811
t̃x [m] 0.118103 0.118097 0.077052 0.062656
t̃y [m] −0.015506 −0.015503 0.006922 −0.006881
TSSR (Ω) 2.058678 2.060113 2.15×106 5.779827
Model check 1.23×10−19 1.23×10−19 1.80×10−11 3.72×10−19

Iterations 2 3 3 3
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Table 5. The upper-triangular portion of the covariance matrix V1 for the coordinates at epoch 1: row and
column numbers followed by the associated numerical value

1 1 5.2857049251185705e-04 1 2 3.0112072439900002e-07 1 3 2.2163970015471102e-04
1 4 -3.3060012167780104e-04 1 5 -2.2446581495537803e-04 1 6 -2.5343445696036004e-04
1 7 -3.0974036938091802e-04 1 8 -7.4422501336440000e-05 1 9 1.2316417979071101e-04
1 10 2.9849301683632302e-04 1 11 6.1944192322230007e-06 1 12 -1.0276614593379901e-04
1 13 -1.8577329964890101e-04 1 14 3.6244201617832402e-04 1 15 -1.5958929463899500e-04
1 16 9.9987021169947011e-05 2 2 5.1645507048873602e-04 2 3 4.0728507326387003e-05
2 4 -1.0000823727611901e-04 2 5 -1.8278284645652202e-04 2 6 -1.6265542801598300e-04
2 7 -1.0458569283936001e-04 2 8 -8.9543289024250001e-05 2 9 5.9950930752997007e-05
2 10 -3.5258061736731003e-05 2 11 -6.3711277472731004e-05 2 12 4.3403859615880001e-05
2 13 1.8024977671021402e-04 2 14 -1.2951456512824702e-04 2 15 6.9850434616229999e-05
2 16 -4.2879336832345003e-05 3 3 6.1101176008653707e-04 3 4 -2.0315427619786602e-04
3 5 -2.6683137867546802e-04 3 6 -3.0461425870949700e-04 3 7 -4.0530634456603404e-04
3 8 8.7952477461938002e-05 3 9 2.7767431373654001e-05 3 10 1.2061066507825600e-04
3 11 -4.7659830667130001e-06 3 12 -2.0971626484055001e-05 3 13 -5.4391024593689005e-05
3 14 1.6558385890034301e-04 3 15 -1.2912411448790800e-04 3 16 1.1386424329115401e-04
4 4 8.2777222054439801e-04 4 5 6.5995597460920006e-05 4 6 2.6599285903412302e-04
4 7 1.2180558107243101e-04 4 8 -1.7127450086786001e-05 4 9 -4.9251029387330006e-05
4 10 -4.2253794234299304e-04 4 11 1.0022267062051001e-05 4 12 1.2390531393505200e-04
4 13 2.1887205868590702e-04 4 14 -5.0339456913838106e-04 4 15 1.6631092866995802e-04
4 16 -1.7460073595352302e-04 5 5 6.2760185074075300e-04 5 6 2.0791753467522600e-04
5 7 1.5485520136481000e-05 5 8 2.4436563047611101e-04 5 9 -7.8315474715017009e-05
5 10 -1.8418744339853901e-04 5 11 -2.5854139004645000e-05 5 12 -4.2386999902525006e-05
5 13 1.6543949322898002e-05 5 14 -1.3052198865143701e-04 5 15 -6.4166116435632005e-05
5 16 2.1602313059309000e-05 6 6 9.2599529493215009e-04 6 7 5.8146483162555007e-04
6 8 1.2268553799023402e-04 6 9 -1.8062344580547401e-04 6 10 -3.7805609355220303e-04
6 11 -3.0203512679857001e-05 6 12 4.6556596221795004e-05 6 13 -1.2232674215847600e-04
6 14 -5.1313452391676202e-04 6 15 1.0181780646886600e-04 6 16 -3.0737798988240002e-04
7 7 1.1058615997014982e-03 7 8 2.6221711403204902e-04 7 9 -2.4311905812814501e-04
7 10 -2.4347880305738902e-04 7 11 -8.4710620000211009e-05 7 12 4.7395236099771003e-05
7 13 -1.9898662308994402e-04 7 14 -3.8043259991024501e-04 7 15 1.2051571080840701e-04
7 16 -2.8438456224831702e-04 8 8 7.4494925733171308e-04 8 9 -2.2056116050899301e-04
8 10 -2.1338643681943602e-04 8 11 6.8620856530167000e-05 8 12 -3.9234683498115003e-05
8 13 -3.4250623741234203e-04 8 14 -3.3626438587133203e-04 8 15 -2.5668503190103001e-05
8 16 -1.7208265335987702e-04 9 9 3.9583795016671903e-04 9 10 2.3759992909340001e-05
9 11 -1.7705163148991002e-05 9 12 -4.6034011328802005e-05 9 13 -5.6876992206821006e-05
9 14 3.7598217036760101e-04 9 15 -1.5075206205812601e-04 9 16 3.6777162028395004e-05

10 10 6.6836796286931803e-04 10 11 -2.6055431838001000e-05 10 12 -1.4499412607699402e-04
10 13 1.0601286059567501e-04 10 14 4.1404458048523201e-04 10 15 -9.5150345192206005e-05
10 16 1.1181550558688800e-04 11 11 2.4007402828181703e-04 11 12 -2.7330509375470003e-06
11 13 -1.2298404847052301e-04 11 14 -4.1665119094890003e-06 11 15 9.7506354775860004e-06
11 16 4.8227331877930002e-05 12 12 2.6319739300808003e-04 12 13 5.2668686072597006e-05
12 14 -2.3914824677896801e-04 12 15 1.1482641320053501e-04 12 16 -5.3685133414396005e-05
13 13 6.5192974789769309e-04 13 14 -7.1800128988254008e-05 13 15 -4.9460374059992003e-05
13 16 -2.1175344006979000e-05 14 14 1.1194914159530060e-03 14 15 -3.1708698737387001e-04
14 16 1.8791442347010102e-04 15 15 4.2282565878049401e-04 15 16 -1.4898164708493001e-05
16 16 4.5089593497817202e-04
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