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Abstract

Modern permanently installed laser scanning systems (PLS) allow capturing point clouds in short intervals
(e.g., sub-hourly), bringing us closer to the early detection of small surface changes that may precede larger
events. Predicting potential hazards necessitates near real-time surface change computation. This requires
reliable and efficient methods that can be operated directly on laser scanners in the future. We propose a
method that combines low-resolution (meters) change detection with high-resolution (centimeters) change
analysis. First, utilizing the Mahalanobis distance, a change detection approach identifies significant intra-
voxel changes, filtering out temporary changes (e.g., tree movements due to wind) to retain only persistent,
relevant changes (e.g., rock movements). Second, sub-point clouds of areas exhibiting significant change are
extracted and subjected to point cloud-based surface change analysis. Hierarchical analysis of point clouds
with fine-tuned key parameters results in a data volume reduction of over 95% and a miss rate of less than 6%,
both relative to a manually annotated reference point cloud. Furthermore, a computation time decrease of 97%
is achieved relative to an M3C2-only run. Our approach is based on the hierarchical detection and analysis
of areas exhibiting surface change. This method is particularly efficient when these areas are considerably
smaller than the monitored area, allowing processing within seconds and much faster than data acquisition. A
further advantage is that this methodology is implemented using the open-source Python libraries py4dgeo
and VAPC, which enables straightforward integration into your own PLS monitoring workflows, allowing
processing much faster than data acquisition (e.g. within seconds).
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1 Introduction
Deformation monitoring through repeated LiDAR
acquisitions is a valuable technique for change de-
tection in outdoor settings. The analysis of sur-
face deformations, such as gravitational mass move-
ments (Jaboyedoff et al., 2012), can be done due
to densely sampled surfaces at resolutions ranging
from sub-centimeter to decimeter scales, depend-
ing on the distance to the target. Modern laser
scanning systems (Kromer et al., 2017; Czerwonka-
Schröder et al., 2022) are furthermore capable of
acquiring data with high temporal resolution, e.g.,
at sub-hourly intervals. This enables the detec-
tion of small surface changes that may precede
larger events and could hence trigger early warn-

ing systems for natural hazards. Research on these
4D (3D+time) datasets demonstrates that pre-failure
events in rockfall monitoring settings can be de-
tected through the temporal domain (Williams et al.,
2019).
Much research has been conducted on the detailed
analysis of bi-temporal point clouds (Qin et al.,
2016). Current methods for 4D analysis are still
evolving and are inherently computationally expen-
sive and time-consuming (Anders et al., 2020). Per-
manent laser scanning (PLS) processing pipelines
typically analyze data retrospectively or rely on a
stable internet connection to transfer data to high-
end hardware for analysis (Czerwonka-Schröder
et al., 2022). As continuous data acquisition be-
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comes increasingly feasible, rapid on-device com-
putations will be required to detect surface change
within billions of points in a short period of time.
This is especially important for monitoring criti-
cal infrastructure, where timely data analysis can
substantially impact decision-making. To the best
of our knowledge, there is currently no method
that combines near real-time change detection with
detailed change analysis (Wellhausen et al., 2017;
Gehrung et al., 2019; Fahle et al., 2023).
We address this gap with a two-stage hierarchical
approach that extends state-of-the-art PLS process-
ing pipelines. The initial stage of this framework
is the data minimization phase, which reduces the
point cloud data to areas where persistent surface
change (e.g., rockfall) may have occurred by coarse
change detection. This is accomplished using the
open-source VAPC library (Tabernig et al., 2024),
which enables voxel-based identification of notable
discrepancies between bi-temporal point clouds. In
the second step, the change analysis step, we per-
form point cloud-based change analysis in regions
established during the data minimization phase.
This step provides detailed information on the ac-
tual change magnitudes and directions. For this, in
this study, we use the M3C2 algorithm (Lague et al.,
2013) implemented in the py4dgeo library (py4dgeo
Development Core Team, 2023).
Decision making in the context of natural hazard
monitoring relies on low computation times and
high completeness, which typically represents a
trade-off. We aim to find a Pareto-optimal solu-
tion that reduces data volume and computation time
while minimizing the number of missed points that
contain information about actual surface change. To
assess the reliability of the proposed workflow, we
employ both data from a real rockfall event and syn-
thetic LiDAR data (Weiser and Höfle, 2024) gener-
ated by simulating a rockfall.

2 Data Description

To enable the detection of persistent change, we
calibrate our method using virtual laser scanning
(VLS) point clouds of simulated rockfall events
to determine the most effective parameters. We
develop four simulation scenarios to evaluate the
method’s performance in various contexts. Parame-
ter combinations resulting in the smallest miss rates
(false negative rate/FNR) at the simulated data are
then applied to the real data.

2.1 Real data

The test site is located in Trier, Germany, and it
is monitored hourly using a permanently installed
laser scanner (RIEGL VZ-2000i) (Czerwonka-
Schröder et al., 2022). Scans are acquired with a
resolution of 15 mdeg and a pulse repetition rate
of 50 kHz. On the morning of August 26, 2024, a
rockfall (ca. 150 m³) occurred. A rockfall net suc-
cessfully stopped rock fragments that would other-
wise have reached the road or railway. In this study,
we use data from the epoch before the rockfall and
the epoch following it, with a one-hour interval be-
tween the point clouds. To facilitate the analysis, we
focus exclusively on bi-temporal data and illustrate
the impact this approach has on point cloud time se-
ries.

Figure 1. Illustration of the proposed hierarchical
analysis for point clouds. Top row (left to right)
shows data preparation steps, including voxeliza-
tion of point clouds. Bottom row (right to left) de-
picts data analysis steps: intra-voxel change detec-
tion, 3D masking, and point cloud-based change
analysis on segmented regions.

2.2 Simulated PLS data

To reliably calibrate our change detection method,
we generate simulated rockfall events through a
three-stage process: creation of a digital twin (DT),
introduction of dynamics, and VLS (Weiser and
Höfle, 2024).
Creation of rockfall digital twin: We construct
a DT of the study site to replicate the real-world
environment. This involves generating a high-
resolution 3D mesh using the Poisson reconstruc-
tion algorithm (Kazhdan et al., 2006) in CloudCom-
pare (Girardeau-Montaut, 2024), adding volume to
the surface features using Blender (Blender On-
line Community, 2024), and integrating vegetation
movement and rockfall events. Vegetation move-
ment is implemented in the scene by adding wind-
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affected trees. The purpose is to calibrate the change
detection algorithm to detect changes that are rel-
evant to us (rockfall) and filter out those that are
not (wind-affected trees). Seven tree models, rep-
resenting the structures observed at the actual study
site, are generated using Blender’s Sapling Tree Gen
add-on (Weber and Penn, 1995). Wind-induced
movements are simulated by applying Sapling Tree
Gen’s built-in wind animation to introduce suffi-
cient movement to challenge the change detection
algorithm. The temporal variability is covered by
replacing each tree model representation with dif-
ferent wind-induced states for each simulation run.
For the rockfall simulation, the extruded mesh is
subjected to fracturing using Blender’s Cell Frac-
ture add-on (Barton et al., 2024). Selected areas
are intentionally over-fractured to generate small
rock fragments, simulating rockfall debris. To en-
sure that even smaller events are detected, we cover
rock fragment volumes of a range of sizes smaller
than those from the event at the study site (Tab. 1).
The simulation, based on Blender’s built-in physics,
achieves run-out lengths consistent with those ob-
served at the real study site.
VLS of rockfall digital twin: To generate realistic
point cloud data from the dynamic DT, we simulate
a PLS setup replicating the real-world configuration
using HELIOS++ (Winiwarter et al., 2022). The
virtual scanner is configured to emulate the RIEGL
VZ-2000i specifications, resulting in identical verti-
cal and horizontal resolutions as the actual scanner
deployed at the study site. Scanning is conducted
before and after the simulated rockfall and vegeta-
tion dynamics. Through this process, we generate
five distinct point clouds: one representing the un-
changed base scene, three capturing scenarios (S1,
S2, and S3) with both surface changes and wind dy-
namics (Tab. 1), and one scenario reflecting wind
dynamics without any rockfall associated surface
changes. By replicating the key components and
dynamics of the real study site, the DT ensures the
method’s reliability and effectiveness when applied
to real-world data.

3 Methods
3.1 Hierarchical change analysis

Hierarchical analysis is essential to preliminarily
identify areas with potential surface changes. It
adds fast and robust change detection before per-
forming a comprehensive surface change analysis

Table 1. Volume of rockfall fragments (m³) across
simulated scenarios (S), representing a range of
smaller volumes compared to the real event.

Metric S1 S2 S3

Fragments 9 1 30
Mean (m³) 0.879 3.006 1.772
Std Dev (m³) 1.421 0.000 1.958
Min (m³) 0.029 3.006 0.021
Max (m³) 4.536 3.006 8.091
Sum (m³) 7.908 3.006 53.167

only on unstable areas. Our workflow consists of
three main steps: 1) Two point clouds are voxelized
and in each voxel the point distribution is described
statistically. By this, significant discrepancies be-
tween the two datasets are identified. 2) Areas ex-
hibiting notable voxel differences are determined
through statistical testing and are extracted from
the original point clouds using a three-dimensional
mask. 3) Surface change analysis is conducted on
the extracted clusters to assess the detailed changes
between the point clouds (Fig. 1). This hierarchical
approach enables time-efficient analysis of massive
point clouds, which is critical for time-sensitive ap-
plications such as natural hazards monitoring.

3.1.1 Detection of persistent change using vox-
elized point clouds

Our approach detects persistent changes (e.g., rock-
fall) while filtering out temporary variations (e.g.,
wind-induced tree movement) by analyzing the spa-
tial distribution of points within individual voxels.
Voxels containing vegetation exhibit a wide, irregu-
lar, and dynamically varying distribution of points,
whereas those representing stable rock surfaces dis-
play narrower distributions. Similar to Fahle et al.
(2023), we quantify this variability using the Maha-
lanobis distance (Mahalanobis, 1936), which mea-
sures a point’s deviation from the local voxel distri-
bution in units of standard deviation. Consequently,
a point at an equivalent Euclidean distance from the
voxel center yields fewer standard deviations in veg-
etated voxels than in rock-face voxels due to the
broader spread of points.
We begin this step by voxelizing each point cloud
using a user-defined voxel size, which must be large
enough to enhance computation speed but small
enough to accurately capture the essential structural
details of the point cloud. Voxels occupied in only
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one of the two epochs are considered to have under-
gone significant change. For meaningful hypothe-
sis testing, we do not consider voxels that are oc-
cupied by less than 30 points. Voxels occupied in
both epochs (t1 and t2) are further investigated. For
each voxel pair, we compute the voxels’ centers of
gravity (µt1 and µt2) and covariance matrices (St1
and St2). Using these parameters, we compute the
Mahalanobis distance (D) (Mahalanobis, 1936). We
compute this distance twice: once from the distri-
bution of the voxel at t1 to µt2, resulting in D1, and
once from the distribution of the voxel at t2 to µt1,
resulting in D2. To maximize the likelihood of de-
tecting significant differences, we proceed with the
larger Mahalanobis distance (DM) for further analy-
sis.

D1(µ1,µ2) =
√
(µ1 −µ2)T S−1

2 (µ1 −µ2) (1)

D2(µ2,µ1) =
√
(µ2 −µ1)T S−1

1 (µ2 −µ1) (2)

DM = max(D1,D2) (3)

The computed Mahalanobis distance (DM) is com-
pared against the chi-squared distribution to deter-
mine the p-value for each voxel:

p-value = 1−CDF(χ2,D2
M) (4)

Where CDF is the cumulative distribution function.
In order to detect outliers, a significance level (α)
is determined through optimization. If the p-value
is below α , we consider the difference between the
compared voxels to be statistically significant. In
addition to the voxel size, α is the second input pa-
rameter of our method.
To facilitate voxel-based operations, we developed
the open-source Python library VAPC (Tabernig
et al., 2024), which enables users to perform hier-
archical change analysis efficiently, and to plug in
their own deformation analysis method in a hierar-
chical workflow. Furthermore, VAPC enables quick
comparison of own methods with baseline state-of-
the-art methods such as M3C2 and variants thereof.

3.1.2 Masking unstable areas

Voxels exhibiting significant differences are iden-
tified and merged. These merged voxels serve as
three-dimensional masks to extract regions showing
changes in both point clouds. To ensure that we ex-
tract sufficient points for consecutive change analy-
sis, we take into account the maximum normal ra-
dius used in the M3C2 computation. Specifically,

points within the mask’s point cloud are voxelized
using a voxel size equal to half of the maximum
normal radius we want to use in the M3C2. Subse-
quently, the mask is expanded by incorporating all
26 neighboring voxels of each voxel, regardless of
whether they are detected as significantly changed.
This expansion process guarantees that normals are
adequately computed at the edges of the point cloud
segments.

3.1.3 Change analysis using extracted point
clouds

The change analysis step can include any custom
change analysis method. We choose to use the
M3C2 algorithm (Lague et al., 2013) as a con-
sistent benchmark because it is a well-established
method suitable for the process we are monitor-
ing. More specifically, we analyze the extracted
point clouds for surface changes using the py4dgeo
library (py4dgeo Development Core Team, 2023).
The same M3C2 settings are used for all computa-
tions, which allows a fair comparison of computa-
tion times. We use a single normal radius of 1 m, a
cylinder radius of 1 m, and a maximum distance of
20 m.
Our hierarchical analysis method requires two pa-
rameters: voxel size and the designated significance
level α to identify significant surface changes in
the voxel space. These parameters strongly influ-
ence the result and must be selected based on ex-
tensive testing. To better understand their impact
and relation, we conduct a thorough Pareto analysis
(Sect. 3.2).

3.2 Parameter selection using Pareto
Analysis

Pareto analysis is a method for determining trade-
offs between competing objectives in situations
where a single solution is not attainable. This in-
volves evaluating each potential solution against all
others. A solution is considered non-dominated if
no other solution exists that matches or exceeds its
performance in every objective while offering an
improvement in at least one. This approach iden-
tifies a set of balanced trade-off options, where any
improvement in one objective would lead to a com-
promise in another (Deb, 2001). The collection of
these non-dominated solutions is referred to as the
Pareto frontier, representing the boundary of trade-
offs in the objective space. Seppelt et al. (2013) suc-
cessfully applied Pareto analysis to identify trade-
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offs between ecosystem services, land use, and bio-
diversity for land management. Inspired by this ap-
proach, our study addresses the trade-off between
two critical requirements in rockfall monitoring:
rapid data analysis and low FNR. Rapid data analy-
sis supports timely decision making, and a low FNR
is critical to avoid missing important events. For ex-
ample, our voxel-based filtering step aims to reduce
data volume and thus computation time as much as
possible. If the filtering step is too strict, too many
points will be removed, increasing the FNR. Con-
versely, if the filtering step is too mild, a lower FNR
can be maintained, but the reduction in computation
time will be less. To objectively handle this trade-
off, we apply Pareto analysis considering two ex-
plicit criteria: (1) the False Negative Rate (FNR),
and (2) the relative computation time (RCT), di-
rectly correlated with data volume reduction (DVR).
Specifically, our approach explores different com-
binations of voxel sizes and alpha parameters. We
find the Pareto frontier by evaluating the result of
each distinct combination regarding these two ob-
jectives. The resulting Pareto frontier defines the
parameter combinations for which no other combi-
nation yields simultaneously lower FNR and lower
RCT. The Pareto-frontier provides a transparent set
of solutions, from which practitioners can choose
based on specific operational priorities, either pri-
oritizing accuracy (low FNR) or computational ef-
ficiency (low RCT). Thus, the final selection of pa-
rameters remains a subjective decision, guided by
the specific demands of the rockfall monitoring task
at hand.

3.3 Evaluation

We use a two-step approach to determine parameter
combinations for the detection of persistent changes
in our study site. These steps are performed once at
the beginning and the selected parameters can then
be applied to a time series of arbitrary length. First,
we employ a grid search on simulated scenarios to
identify parameter combinations that meet the min-
imum requirements. Second, we evaluate these pa-
rameter combinations using the manually annotated
real point cloud.
For the first step, we compute the FNR for 180 com-
binations per simulated scenario. Voxel sizes rang-
ing from 1 m to 10 m with a 1 m step size, from 10 m
to 20 m with a 2 m step size, and significance levels
between 0.1 and 0.99999 are selected. For each pa-
rameter combination, we calculate the mean FNR

across all scenarios. Combinations with an FNR ex-
ceeding 0.2 are excluded, as these values are inade-
quate for further analysis.
To evaluate the approach, a point cloud contain-
ing a rockfall event from the study site is manu-
ally classified as either ”change” or ”no change”,
serving as the reference for quantifying the FNR,
DVR, and computation time. Based on the results
on this dataset, we obtain the Pareto-efficient solu-
tions, from which we select the parameter combi-
nation we qualitatively present the results in (Sec-
tion 4.2). Regarding computation time, we are in-
terested in the relative computation time (RCT), de-
fined as the processing time for the full hierarchical
analysis (voxel-based detection of persistent change
+ change analysis on masked subset) relative to the
time required to execute full-resolution change anal-
ysis (M3C2) on the entire area. Finally, the effec-
tiveness of the Pareto frontier is compared to the
non-hierarchical results.

4 Results
4.1 Pareto frontier analysis

Solutions on the Pareto frontier, which represent
balanced trade-offs, indicate that data volume can
be reduced by more than 90% while maintaining an
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Figure 2. Solutions of all parameter combinations
(orange points) and the Pareto-efficient solutions
(black points), which represent the balanced trade-
offs between false negative rate (FNR), data vol-
ume reduction (DVR), and computation time (not
shown on plot). FNR and DVR are relative to the
manually annotated reference point cloud.
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Table 2. Overview of the Pareto-efficient solutions. Three solutions with either low false negative rates
(FNR) or low relative computation times (RCT) are highlighted in bold to emphasize possible trade-off solu-
tions. Computation times are normalized to the maximum value, which is the time required using only M3C2
on the full point cloud. The table presents the voxel size (v), significance level (α), FNR, data volume reduc-
tion (DVR), RCT for the Voxel step (RCT Voxel), RCT for the M3C2 step (RCT M3C2), and RCT for the
full hierarchical analysis (RCT Combined).

v [m] α FNR [%] DVR [%]
RCT

Voxel [%]
RCT

M3C2 [%]
RCT

Combined [%]

3 0.90000 18.0 98.7 2.4 0.2 2.6
3 0.95000 15.6 98.5 2.4 0.2 2.6
4 0.99000 5.3 92.2 2.5 1.0 3.5
6 0.99000 10.6 98.4 2.4 0.3 2.7
6 0.99900 5.9 95.7 2.4 0.6 3.0

10 0.99999 2.2 78.6 2.7 9.3 12.0

FNR below 10% (Fig. 2). Based on these results,
further analysis of Pareto efficient solutions shows
that the RCT for the voxel step remains nearly con-
stant at 2.5%, while the RCT for the M3C2 step
varies depending on the input parameters voxel size
and α (Tab. 2). The solution that achieves the low-
est FNR has the highest RCT (for M3C2 and com-
bined), while the solutions with the lowest RCT
have the highest FNR. For a given voxel size, a
larger α leads to an increased M3C2-based compu-
tation time. This effect is evident for voxel sizes of
3 m and 6 m, where the method detects more false
positives with larger alpha. As a consequence, the
overall computation time increases and the FNR de-
creases, producing more conservative results. These
findings demonstrate the complex interplay between
voxel size and α in determining overall computa-
tion time and FNR. The combination of a voxel size
of 6 m and an α of 0.99900 provides a reasonable
trade-off, achieving an FNR below 6% and reducing
computation time by 97%. We select this parameter
combination for our visual analysis.

4.2 Reduction of detected changes

Fig. 3 clearly demonstrates the reduction in data vol-
ume when using the hierarchical approach. Using
M3C2 without hierarchical analysis enables the de-
tection of the rockfall but also identifies numerous
changes in vegetation as significant. In contrast, hi-
erarchical analysis initially reduces the area of in-
terest to regions where changes of interest have oc-
curred, including some additional voxels. Subse-
quently, the M3C2 computation primarily detects
significant changes in the rockfall area. We observe
that hierarchical analysis effectively detects relevant

changes while also handling vegetated areas, which
would otherwise require additional filtering during
preprocessing (Kromer et al., 2017).

5 Discussion

We demonstrate that combining voxel-based change
detection with point-based change analysis enables
rapid detection of surface changes while efficiently
filtering irrelevant changes, such as non-destructive
vegetation dynamics. Specifically, rockfalls can be
effectively extracted from point clouds.
Compared to previous studies such as Fahle et al.
(2023), our approach employs higher α necessary
for detecting subtle surface changes. This differ-
ence arises from two factors: 1) While Fahle et al.
(2023) utilized mobile laser scanning, we employed
a permanent laser scanner. This allowed us to con-
sistently capture the study site from the same view-
point with identical scan settings, ensuring that the
distribution of points remains highly similar be-
tween epochs. 2) Our study site includes vegetation,
and therefore requires higher sensitivity in change
detection. This increased sensitivity is particularly
advantageous for applications where even small sur-
face changes are highly relevant (like for rockfall
monitoring).
In practical applications, such as long-term moni-
toring with PLS systems, our hierarchical analysis
method significantly enhances computational effi-
ciency. Let’s assume a PLS scenario with hourly
scans over a month (720 epochs). Even if events
of similar extent to the rockfall in our study oc-
curred between each epoch, our method would re-
duce the data volume to less than that of 31 epochs
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Figure 3. Comparison of (a) the manually labeled reference point cloud, (b) the M3C2 algorithm applied to
the full point cloud, (c) the intermediate hierarchical analysis showing voxels with significant change, and
(d) the M3C2 algorithm applied to areas with significant voxel change. Panel (a) is colored based on man-
ual labels, while panels (b) and (d) are colored according to the significance of the M3C2 distance. Panel (c)
highlights significant changes between voxels. The red ellipse indicates the area where the rockfall has oc-
curred. Date of rockfall: 2024.08.26.

(4.3%). This reduction facilitates more detailed and
frequent change analyses and could allow the in-
tegration of multiple complementary methods like
M3C2 and F2S3 (Gojcic et al., 2020), which would
otherwise be computationally infeasible in a near
real-time context. Consequently, this approach sup-
ports more timely and informed decision-making in
fields such as natural hazard monitoring.
One of the main limitations of our study is that the
final parameters we identified are specific to the cur-
rent study site and may require adjustment for dif-
ferent environments or sensor configurations. To ad-
dress this issue, we suggest employing digital twins
tailored to the requirements of each study site, as
demonstrated in this study. The comparison of com-
putation times does not include the time required to
initialize the monitoring system and determine the
final parameter combination. This initialization du-
ration varies with the level of automation and the
number of parameters evaluated, making it an im-
portant factor during system setup.
Our change detection method has low hardware re-
quirements because keeping working memory re-
quirements low is straightforward due to the chosen
fixed voxel frame approach. On-device processing
could significantly reduce data storage requirements
and enable near real-time transmission of surface
change information to end-users or decision makers.
This capability facilitates establishing baselines for
updating scan schedules, thereby enhancing the re-
sponsiveness and efficiency of monitoring systems.

6 Conclusion

This study presents a powerful hierarchical analy-
sis framework for point cloud data that optimizes
computational performance and data management
by combining low-resolution change detection with
high-resolution change analysis. The approach
combines 1) identification of change areas by de-
tecting statistical intra-voxel changes and 2) point
based change analysis (M3C2) in the reduced ar-
eas. Our method brings us closer to near real-time
on-device processing of PLS data compared to the
current state-of-the-art, which relies on retrospec-
tive data analysis. Future studies should investi-
gate various algorithm combinations and the transi-
tion to on-device processing. All presented methods
are released open-source (https://github.com/
3dgeo-heidelberg). Thus, they can be combined
easily with your own deformation method to create
efficient hierarchical workflows for permanent laser
scanning.
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