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Abstract 

Neural Radiance Fields (NeRFs) and 3D Gaussian Splatting (3DGS) are methods alternative to multi-

view-stereo (MVS) reconstruction in processing photogrammetric data. While they have been 

developed and optimized for creating synthetic 2D views, they are increasingly used for 3D 

reconstruction in the form of 3D point clouds. However, applications in geosciences are rare, and 

especially their suitability for change detection and quantification methods has not been assessed. In 

this contribution, we therefore create point clouds using state-of-the-art MVS on the one hand and 

NeRFs/3DGS on the other hand and compare the changes extracted from bitemporal differencing of 

these point clouds. For this differencing, we utilize the Multiscale Model-to-Model Cloud 

Comparison (M3C2) algorithm. We investigate two different study sites and include a riparian forest 

area as differences between MVS and NeRF/3DGS are especially pronounced in vegetated areas. For 

one of the areas, reference values for change are available through accurate laser scanning data. We 

compare the detected changes qualitatively as well as quantitatively by means of accuracy, precision, 

and recall. Finally, we provide conclusions for change detection and quantification with 

photogrammetric data using NeRFs and 3DGS. 
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1 Introduction  

Topographic monitoring is relevant in a wide range 

of applications in Earth system sciences and enables 

observation of surface dynamics at detailed 

spatiotemporal scales. Especially UAV 

photogrammetry has experienced a tremendous 

boost in applications of 3D topographic 

observations in the past decade, with new 

capabilities provided in terms of accuracy (cm-

scale; compared to aerial and satellite images) and 

coverage (several ha; compared to ground-based 

strategies) (Eltner et al., 2022). 

Typically, 3D models of a scene are obtained via 

photogrammetric reconstruction in a two-step 

approach: First, images are oriented in a bundle 

block adjustment and are georeferenced using 

control points or direct georeferencing; then a pixel-

by-pixel estimation of depth is carried out for each 

overlapping image pair to generate a dense point 

cloud (dense image matching DIM, multi-view-

stereo MVS). With such data, change analysis is 

performed through multiple acquisitions that are 

repeated at different points in time, depending on 

the phenomena to be observed. Common strategies 

of change detection and quantification are 

differencing of Digital Elevation Models (DEMs), 

or, to maintain the full 3D character of the scene, 

direct point cloud comparison (Qin et al., 2016). For 

3D analysis of surface changes, the state-of-the-art 
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is the Multi-scale Model-to-Model Cloud 

Comparison (M3C2) algorithm (Lague et al., 2013), 

which assumes local planarity of surfaces in the 

scene based on a user-defined set of radii that 

account for roughness and variable point density. 

From this, local distances between point positions 

in the scene are derived along the 3D orientation of 

the adjusted plane fit, and an additional estimate of 

the associated uncertainty is derived based on the 

co-registration error, local point density and surface 

roughness. 

In recent years, alternative methods to reconstruct 

the 3D geometry of the scene have been presented, 

replacing the dense reconstruction in MVS. These 

methods are Neural Radiance Fields (NeRFs) and 

3D Gaussian Splatting (3DGS). Both treat the 

reconstruction process as an optimization problem 

and recover the scene as a radiance field. With 

NeRFs, this radiance field is estimated as a neural 

network that maps image ray locations and 

directions to resulting tuples of red, green, and blue 

intensities, representing color. While the original 

idea of NeRFs was to synthesize views of the 3D 

scene from unobserved locations, this constitutes a 

3D representation of the objects in the scene, which 

has already been exploited also in remote sensing 

applications (e.g., Ge et al., 2023). In contrast, the 

idea of 3DGS is the representation of the scene 

through 3D Gaussians, i.e., density functions 

typically represented by an ellipsoid. The 

projections of these ellipsoids on the image plane, 

referred to as splats, then create the colour value at 

a specific pixel location. When creating a 3DGS, 

optimization is carried out such that elongated 

Gaussians are split into separate components, and 

(almost) congruent Gaussians are merged. After 

optimization, the Gaussians can be exported as 

points with 3D direction, 3D magnitude and colour 

information. In contrast to a photogrammetric 

reconstruction, the 3D magnitudes inherently 

contain neighbourhood information, e.g., whether a 

Gaussian represents a linear or a planar feature. 

Missing parts in the scene, e.g. due to occlusion, are 

filled by the mapping to the radiance field, so that a 

full coverage of images of the scene is not 

necessary. Thereby also details in complex scenes, 

such as vegetation, can be better represented 

requiring less input data. 

In this contribution, we explore the potential of 

point clouds directly exported from NeRF and 

3DGS reconstructions for change analysis of natural 

scenes that are captured by UAV photography. By 

reconstructing two scenes at two points in time, 

each using the strategies of MVS, NeRF, and 3DGS, 

we derive different point cloud products as input to 

change analysis. We quantitatively evaluate the 

derived changes compared to UAV-based laser 

scanning data for one of the datasets. Qualitative 

assessment of results indicate the further potential 

of NeRF/3DGS-based change analysis and 

topographic monitoring. By this, our study 

contributes the first insights into the direct usability 

of current computer vision strategies for 

environmental monitoring. 

1.1 Data 

Two sites of Alpine river beds and their 

surroundings, featuring hillslopes and vegetation, 

are used for the experiments, with two epochs each. 

One showcases a high alpine setting in Jamtal, Tyrol 

(WGS84: 46.8954°N, 10.1726°E) at an 

approximate elevation of 2000 m.a.s.l. The Jamtal 

river runs through the study site with maximum 

discharge rates > 15 m³/s (max. Q/day) at the 

investigated location (Stang, 2023). This discharge, 

in combination with flat terrain characterized by 

loose gravel in a stranded riverbed, leads to a 

changing topography. The investigated area 

measures approx. 350 x 700 m and was recorded 

using a calibrated DJI Zenmuse P1 camera mounted 

on a DJI M350 RTK quadrocopter on 2024-08-27 

and 2024-11-11. Both times, a laser scanning survey 

using a DJI Zenmuse L2 mounted on the same 

quadrocopter, was conducted additionally, and 

serves as our reference dataset (see Section 2.6). 

The second dataset was acquired in southern 

Germany, at a natural stretch of the Isar river 

(WGS84: 47.5301°N, 11.3090°E). The elevation of 

this study site is about 900 m.a.s.l. Upstream of the 

study site, a weir redirects water into the 

Obernachkanal channel, controlling discharges at 

the study site to limited amounts. The investigated 

area measures 800 x 400 m and showcases a 

meander of the river with an extensive gravel bed, 

which is limited by the steep flank into the 

Karwendel mountains in the North and alluvial 

forest on the river terrace to the South. Data was 

captured on 2024-08-12 and 2024-11-05 using a DJI 

Phantom 4 RTK UAV with built-in camera. 

2 Methodology 

We investigate the potential of NeRFs and 3DGS 

for topographic change detection and quantification 

in natural scenes. The same UAV images are used 

as input for all 3D reconstruction techniques, which 

are based on Structure-from-Motion (SfM) 

processing (Section 2.1) and explained in detail in 
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the following subsections: MVS in Section 2.2, 

NeRFs in Section 2.3, and 3DGS in Section 2.4. 

Based on point clouds derived from these strategies, 

we perform change detection and quantification 

using direct point cloud comparison (Section 2.5). 

The evaluation of results is based on laser scanning 

data as reference, as described in Section 2.6. An 

overview of the workflow is given in Figure 1. 

 
Figure 1. Diagram of the workflow carried out at each of 

the study sites. For the Isar study site, no laser scanner 

reference was used. 

Results are presented in Section 3 and provide 

insight into the potential and limitations of each 

strategy, as well as directions for future research on 

NeRF/3DGS-based environmental monitoring. 

2.1 SfM  

Structure from Motion (SfM) is a photogrammetric 

technique that reconstructs 3D scenes from 2D 

images by simultaneously estimating camera poses 

and sparse 3D structure (Jäger, 2024). The process 

involves detecting distinctive features, such as those 

identified by the Scale-Invariant Feature Transform 

(SIFT) algorithm (Lowe, 2004) and matching them 

across overlapping images. Outlier rejection 

methods like Random Sample Consensus 

(RANSAC) (Fischler & Bolles, 1981) ensure 

reliable correspondences. Using these 

correspondences, initial camera poses are estimated 

through geometric models, enabling the 

triangulation of sparse 3D points. Bundle 

adjustment then refines the reconstruction by 

minimizing reprojection error and improves both 

camera parameters and 3D point accuracy (Triggs et 

al., 2000). This step ensures the geometric 

consistency and alignment of the sparse point cloud 

with the input images (Petrovska, 2024).  

In our experimental framework, SfM provides the 

fundamental geometric foundation for subsequent 

reconstruction methods, including MVS, NeRFs, 

and 3DGS. The derived camera poses and sparse 

point cloud serve as initialization data and establish 

a common geometric reference frame.  

2.2 MVS 

The classical Multi-View Stereo (MVS) framework 

(Schönberger et al., 2016) is initialized by the output 

of the SfM. In general, the MVS relies on principles 

for correspondence search but has a high 

complexity due to redundancy resulting from the 

multiple observations and the arbitrary viewpoint 

variations (Hermann et al., 2024). By considering 

multiple images of the same scene, the MVS 

algorithms generate a complete and dense 3D 

representation of the scene as a point cloud. MVS 

achieves high 3D reconstruction accuracy when 

surfaces are well textured and diffuse.   

2.3 NeRFs 

Neural Radiance Fields (NeRFs) have emerged as a 

technique for representing 3D scenes captured by 

photographs. The principle of NeRFs utilizes a 

neural network to predict a tuple of color (red, 

green, blue) and density (ρ) for a given location in 

space (X,Y,Z) and viewing direction (φ, θ). A single 

pixel is then reconstructed by sampling and 

evaluating the neural network along the image ray 

and calculating the color value according to (a) the 

density at a given location and (b) the density at all 

locations that are between the target location and the 

respective camera. The density can also be 

interpreted as “the differential probability of a ray 

terminating at an infinitesimal particle at location x” 

(Mildenhall et al., 2020). 

Using cameras with multiple millions of pixels, 

training data sets of substantial size are easily 

created. In the optimization, the resulting colour for 

training pixels is calculated and compared against 

the observed colour. The difference is 

backpropagated through differentiable rendering to 

adapt the weights of the neural network representing 

the scene. While the original goal of NeRFs was 

view synthesis, i.e., the reconstruction of camera 

views from unobserved locations and orientations, 

we exploit the latent representation of the scene 

geometry through the neural network. We export a 

point cloud from the NeRF by sampling locations 

with a high density value, corresponding to a large 

contribution in the pixel color. This is related to the 

presence of an opaque object at a given location. 

The points are subject to a statistical outlier removal 

before export, ensuring that the point cloud mostly 

represents the actual scene geometry.  

2.4 3DGS 

3D Gaussian Splatting (3DGS) represents a novel 

approach to scene reconstruction that models 3D 

scenes as a collection of oriented 3D Gaussians 

(Kerbl, 2023). The approach initializes Gaussian 

primitives from the sparse point cloud generated by 

the SfM pipeline, where each Gaussian inherits its 
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spatial position from the corresponding 3D point 

and adopts the associated color as its initial 

appearance attribute.  Each Gaussian is defined by 

its mean position μ ∈ ℝ³, a rotation matrix R ∈ ℝ³ˣ³, 

and scaling factors s ∈ ℝ³, which together define its 

covariance matrix Σ. Additionally, an opacity value 

α controls transparency, while spherical harmonics 

coefficients are used to model view-dependent 

appearance effects. During optimization, the 

parameters of the Gaussians are refined through a 

differentiable rasterization pipeline. This process 

begins by sorting the Gaussians along each camera 

ray based on their mean positions, ensuring a correct 

ordering for subsequent rendering. Each 3D 

Gaussian is then projected onto the image plane as 

a 2D Gaussian splat, with its anisotropic properties 

preserved under perspective projection. 

Contributions from overlapping Gaussians are 

accumulated using α-compositing, where the 

opacity value α determines the influence of each 

Gaussian on the final rendered pixel. The rendered 

images are compared against ground truth images 

using a photometric loss function, which drives the 

refinement of all Gaussian parameters, including 

their positions, scales, rotations, opacities, and color 

attributes. To further improve efficiency and 

quality, the optimization process dynamically 

adjusts the number and distribution of Gaussians by 

performing density-based pruning and splitting 

operations, which ensures a compact yet accurate 

representation of the scene. 

A key advantage of 3DGS lies in its ability to 

achieve high-quality real-time rendering. However, 

its geometric accuracy in 3D reconstruction requires 

further investigation (Zhang, 2024). To create point 

clouds from 3DGS scenes, we extract the centroids 

of the generated Gaussians and compare the results 

with those obtained from traditional MVS methods 

and NeRF. This comparative evaluation allows us to 

assess 3DGS's performance in geometric 

reconstruction and explore its potential for change 

detection applications. 

2.5 Change Detection and 

Quantification 

The primary interest of our applications is to derive 

surface changes that typically represent sediment 

transport in our study sites (e.g. transport of bed 

load through water discharge). This is manifested in 

increase or decrease of elevation in the riverbed, 

which can be extracted by direct point cloud 

comparison of the surface representation in a 

straight-forward way. 

Change detection and quantification of bitemporal 

point clouds for each of the strategies (MVS, NeRF, 

3DGS) is therefore performed using the state-of-

the-art M3C2 algorithm (Lague et al., 2013). We 

use a multi-scale normal radius of 0.25 m to 1.0 m 

(0.25 m steps, maximizing planarity) for the plane 

adjustment to the local surface, which determines 

the direction of change estimation. The projection 

radius defines the neighborhood of 3D points that 

are used to estimate the local surface. We set this 

radius to 0.5 m. The same parameters are used for 

both sites as they feature similar surface 

characteristics and, accordingly, roughness scales. 

To estimate the minimum detectable change (Level 

of Detection), we apply a significance threshold of 

95%. 

We do not consider (changes of) vegetation in the 

scene in the frame of this study, as this will require 

a different approach of change detection. However, 

as vegetation is only featured in the Isar study site, 

we also have no suitable laser scanning reference 

data for evaluation of this part of the scene and 

potentially observed changes (cf. Section 2.6). 

2.6 Evaluation  

For the Jamtal dataset, the changes derived for each 

3D reconstruction strategy are evaluated against a 

UAV laser scanning point clouds. Regarding the 

measuring principles, we can assume that the 

LiDAR acquisitions in general provide more 

accurate representations of the scene and 

consequently of changes between the epochs. We 

can, therefore, conduct an appropriate relative 

assessment of change detection and quantification. 

A quantitative assessment of absolute changes is not 

possible, since there is no ground-truth data 

available for either study site. However, visual 

interpretation of change information will provide 

some insight into the process types and scales that 

can be observed. 

3 Results & Discussion 

In the following, the point clouds obtained using the 

three investigated photogrammetric methods are 

presented (Sections 3.1-3.3) along with the result of 

the change detection and quantification (Sect. 3.4). 

3.1 MVS 

MVS was performed using Agisoft Metashape 

(v2.1.3) for the Jamtal dataset (Fig. 2) and 

Pix4Dmatic (v1.68.1) for the Isar river dataset 

(Fig. 3). 
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Figure 2. MVS results of the Jamtal River site from bi-

temporal datasets (left: Aug., right: Nov. 2024). 

 

Figure 3. MVS results of the Isar River site from bi-

temporal datasets (left: Aug., right: Nov. 2024). 

 

3.2 NeRF 

For the NeRF reconstruction, we used the Nerfacto 

model implemented in Nerfstudio (Tancik et al., 

2023). The resulting point clouds for the Jamtal 

dataset are shown in Fig. 4. In the detail view, 

typical artefacts of NeRFs, i.e., large undulations in 

the terrain, can be clearly seen. Fig. 5 shows the 

rendered NeRF point cloud for the Isar dataset. In 

the oblique views, the successful reconstruction of 

the tree crowns in the riparian forest can be seen. 

The riverbed exhibits undulations similar, albeit less 

pronounced than with the Jamtal dataset (Fig. 4). 

Initial experiments with less accurate projection 

center locations (lower-quality SfM reconstruction) 

showed large systematic deviations, highlighting 

the need for a solid bundle block adjustment prior to 

NeRF reconstruction.  As shown in Table 1, the 

number of points exported from the NeRF is similar 

to the MVS points for the Jamtal dataset, but 

significantly lower for the Isar dataset to keep noise 

at a plausible level. 

  

  

Figure 4. NeRF results of the Jamtal River site from bi-

temporal datasets (left: August, right: November 2024. 

Top: top-down view on the full dataset, bottom: detail 

view on the riverbed, box size approx. 15x30 m). 

    

    
 

Figure 5. NeRF results of the Isar River site from bi-

temporal datasets (left: Aug., right: Nov. 2024. Top: top-

down view, bottom: oblique view). 

 

3.3 3DGS 

For the 3DGS reconstruction, we used the Gaussian 

Splatting PyTorch Lightning Implementation 

(https://github.com/yzslab/gaussian-splatting-lightning). 

This implementation allows us to train on high-

resolution original images while avoiding memory 

overflow. The reconstruction results are presented 

in Figures 6 and 7. In contrast to the MVS and 

NeRFs visualisations, we additionally show the 

render result, i.e., the reconstruction as used for the 

3DGS optimization. The top row (a,b) shows this 

rendered reconstruction. Below these, (c,d) display 

the centroids of the extracted Gaussians represented 

as point clouds of the complete scene, coloured by 

distance to the viewing plane. The detailed views 

(e,g) demonstrate the rendering quality of selected 

regions, while (f,h) show their corresponding point 

cloud representations.  

Table 1. Number of points (in millions [M]) for each of 

the reconstruction methods, epochs, and datasets. For 

3DGS, the number of 3D Gaussians is given. 

 

3.4 Change Detection and 

Quantification 

From the extracted point clouds, bitemporal change 

values were derived using the M3C2 algorithm. The 

results of the M3C2 algorithm, including the 

derived change, the associated uncertainty, and 

binary change maps, are shown in Figures 8 and 9. 

The change was evaluated at core point locations, a 

subsampled point cloud with approx. 20M points for 

Dataset/ 

Epoch  
Points  

ULS 
Points 

MVS 
Points 

NeRF 

3DGS 

Jamt. 08-27  182M 393M 299M 8M 

Jamt. 11-11 53M 477M 480M 8M 

Isar 08-12 N/A 58M 5M 3M 

Isar 11-05 N/A 314M 4M 3M 
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Jamtal and 46M points for the Isar dataset, 

respectively. 

a  b  

c  d  

          

e                     f  g                      h  

August  November  
 

Figure 6. 3DGS results of the Jamtal River site (August 

and November 2024). (a,b) Full scene renderings; (c,d) 

Extracted point clouds of the complete scene; (e,g) 

Zoomed-in renderings showing detail preservation; (f,h) 

Detailed point cloud views of the selected region. 

 

a  b  

c  d  

  

e                           f  
  

g                      h  

August  November  
 

Figure 7. 3DGS results of the Isar River site (August and 

November 2024). Layout of renderings and point clouds 

follows the same arrangement as Figure 6. 

 

For quantitative evaluation of the change result, we 

use the binary UAV laser scanning (ULS) change 

map as reference to compare with the three 

photogrammetric datasets, calculating the accuracy, 

precision, and recall values (Table 2), where 

accuracy is the percentage of points correctly 

identified as change or no change, precision is the 

number of points correctly identified as change (true 

positives, TP) in relation to the number of TP and 

FP, and recall is the number of true positives in 

relation to TP and FN. 

Table 2. Performance of the change detection using 

different reconstruction methods for the Jamtal. 

Score MVS NeRF 3DGS 

Precision [%] 93.98 88.33 48.09 

Recall [%] 43.10 10.83 12.05 

Accuracy [%] 86.76 20.43 55.10 

As seen in Figs. 8 and 9 and Table 2, applying 

change detection directly on the exported NeRFs 

and 3DGS performs – in general – more poorly than 

standard MVS. While 3DGS tends to perform better 

than NeRFs (Tab. 2), the spatial coverage is much 

more inhomogeneous than with NeRFs (Figs. 8 and 

9). In the riparian woodland area of the Isar study 

site, false positives can be seen in the MVS result, 

that are not present in the NeRF or 3DGS results, 

pointing to a misrepresentation of vegetation in the 

MVS due to the inherent smoothness constraint in 

the reconstruction. Both NeRFs and 3DGS are 

radiance field methods optimizing the object space 

representation such that it best recreates the camera 

views. Especially for 3DGS, this means that the 

centroids do not represent a surface, as is the case 

with laser scanning and MVS. With NeRFs, the 

large terrain undulations for the Jamtal dataset can 

be explained by the lack of oblique imagery. The 

Isar dataset shows less of these effects, (cf.  

significant change quantification in Fig. 9, right 

column). Notably, the riverbed (where change is 

expected) and some of the paths through the riparian 

woodlands (where no change is expected) are 

flagged as significant change, while the forested 

area is correctly not marked as significant change.  

4 Conclusion 

While Neural Radiance Fields (NeRFs) and 3D 

Gaussian Splatting (3DGS) show promising results 

in 3D scene representation, especially with complex 

objects such as vegetation, a direct application of 

change detection and quantification methods 

established for point clouds did not show promising 

results. On flat and planar objects, the smoothness 

constraint of Multi-View-Stereo reconstructions 

complements the planarity constraint of the M3C2 

algorithm. This shows that further research is 

required to better transfer existing methods for 

topographic change quantification and detection. 

Especially the quantification of local uncertainty, 

for which M3C2 relies on estimating the quality of 

a planar fit, should be revisited as it could be 

evaluated via the density gradient for NeRFs and via 

the axis definitions of the individual Gaussians for 

3DGS.  
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Figure 8. Change detection and quantification results of the Jamtal River site from bi-temporal datasets (August and 

November 2024) for each dataset: UAV laser scanning (reference), MVS, NeRF, 3DGS. 

 

 

Figure 9. Change detection and quantification results of the Isar River site from bi-temporal datasets (August and 

November 2024) for each dataset: MVS, NeRF, 3DGS. 
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