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Abstract 

Light Detection and Ranging (LiDAR) systems can be a valuable source of information about 
environmental changes over time. It might concern changes in surfaces of different objects caused 
by seasonal effects, e.g., vegetation cover, various surface or groundwater levels, or snow load. 
Having LiDAR data from different periods allows one to assess such changes. Considering the huge 
number of measurements within a point cloud, one should choose a suitable data processing method. 
Classical methods, including the least squares estimation, might often be enough. However, such 
methods cannot deal with outlying observations, which often disturb LiDAR measurements. One of 
the possible choices would be the Msplit estimation, which proved applicable to the problems 
mentioned. Up to now, that estimation method has been applied to the whole observation set or to its 
parts if the surface (or profile) has a more complex shape. This paper is concerned with applying a 
sliding window algorithm to process airborne laser scanning point clouds to detect seasonal changes 
in two examples: river water level and vegetation cover height. Generally, the results confirm the 
applicability of the algorithm in Msplit estimation. The outcomes seem more informative and reliable 
than those obtained from processing the whole data or its separate parts. For the sake of comparison, 
the chosen data were also processed using classical methods, i.e., the least squares estimation and 
M-estimation. It shows that Msplit estimation might overperform such methods.  
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1 Introduction  

Light Detection and Ranging (LiDAR) systems are 

modern measurement facilities that can provide a 

huge number of observations in a relatively short 

time. The measurements usually create a dense 

point cloud. One can acquire such observations of 

the same object in different epochs, which makes 

the base for deformation or displacement analysis 

(e.g., Cabaleiro et al., 2015; Yang et al., 2017; 

Janicka et al., 2020). Terrestrial laser scanning 

(TLS) can be applied to the problem mentioned, 

especially when a scanner can be placed close to the 

object. On the contrary, the accuracy of the airborne 

systems (ALS) is usually not sufficient for 

deformation analysis of buildings or engineering 

structures (e.g., Hodgson and Bresnahan, 2004; 

Alkan and Karsidag, 2012; Tomljenovic et al., 

2015; Ostrowski et al., 2018). However, it can be 

used to monitor more extensive ground or water 

movements (landslides or changing water levels). 

Notwithstanding, the use of LiDAR point clouds 

usually requires data processing. The procedures in 

question are used to model, e.g., ground surface, 

engineering structures, or their deformations, and 

are meant to make the final product more accurate, 

reliable, and informative. There are several different 

approaches for processing LiDAR data, from the 

most conventional (the least squares method (LS)) 

to more complex and advanced methods (e.g., 

OptD, RANSAC, or Msplit estimation) (e.g., 

Schnabel et al., 2007; Błaszczak-Bąk et al., 2015; 

Błaszczak-Bąk et al., 2017; Li et al., 2017; 

Wyszkowska et al., 2021). 

Msplit estimation is the method that was designed as 

a development of M-estimation (Wiśniewski, 

2009). The primary assumption of the method is that 
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the observation set is an unknown mixture of 

realizations of (at least) two different random 

variables. Such an assumption leads to the split of 

the classical functional model into (at least) two 

competitive functional models (Wiśniewski, 2009, 

2010). That makes the method unique and that is 

also a reason why Msplit estimation has found many 

practical applications: heterogeneous data fusion 

(Tao, Li et al., 2024; Tao, Su et al., 2024), detection 

of unstable points in GNSS networks 

(Banimostafavi, Sharifi and Farzaneh, 2023), 

deformation analysis (e.g., Wiśniewski, 2009, 2010; 

Zienkiewicz et al., 2017; Wyszkowska and 

Duchnowski, 2019), direct identification of gross 

errors (Li et al., 2013), S-transformation (Nowel, 

2019; Guo et al., 2020), robust coordinate 

transformation (Janicka and Rapiński, 2013), 

marine navigation (e.g., Zienkiewicz and 

Czaplewski, 2017), regression analysis 

(Wiśniewski, 2009, 2010), or the most interesting 

here laser data processing (e.g., Błaszczak-Bąk et 

al., 2015; Janicka et al., 2020; Wyszkowska et al., 

2021; Wyszkowska and Duchnowski, 2022; Janicka 

et al., 2023).  

Msplit estimation is, in fact, a class of estimation 

methods derived from different assumptions, which 

reflects the variety of applications in surveying or 

differences in observation set types to be processed. 

The basic variant of Msplit estimation is the squared 

Msplit estimation (SMS), and it is based on the 

general assumption that the observation errors are 

normally distributed (Wiśniewski, 2009, 2010). It is 

the simplest variant of Msplit estimation. The second 

basic variant of Msplit estimation is called the 

absolute Msplit estimation (AMS), and it is based on 

applying L1 norm condition (Wyszkowska and 

Duchnowski, 2019). There are also other variants of 

Msplit estimation, e.g., variants that are robust 

against global or local outliers (Wyszkowska and 

Duchnowski, 2022, 2024). 

2 Modelling from LiDAR data using 

Msplit estimation 

LiDAR data might be processed to obtain surfaces, 

profiles, or displacements or, generally, modelling 

actual terrain, engineering structures, or natural 

phenomena. In this paper, one can focus on the 

cutouts of the original point clouds related to the 

required profiles (e.g., terrain, water surface, or 

construction beam). The determined profiles are 

supposed to be approximated by polynomials of 

different degrees. The choice of the polynomial 

degree depends on the complexity of the profile. 

There are also various approaches to processing 

LiDAR data. The first one is to process all 

measurements together to obtain the entire profile at 

once. Such an approach can be associated with easy 

computations but is unsuitable for complex objects. 

The second approach divides the data into packs 

corresponding to the chosen profile parts. Then, 

each part is processed separately and can be 

performed in intervals of arbitrary distances. For 

example, one can assume 10 m distance intervals 

within the profile heights are estimated in the 

middle of the intervals. The subsequent observation 

sets do not have common points (e.g., Wyszkowska 

et al., 2021; Wyszkowska and Duchnowski, 2022).  

This paper is focused on the third approach, namely 

the sliding window method. Here, one can assume 

the reasonable width of the sliding window. Such a 

window is then shifted from the beginning till the 

end of the profile by the chosen slide. The profile 

heights are determined in the middle of each 

window. The question is if such an approach can 

provide better (more reliable) results than the two 

classical approaches described in the preceding 

paragraph.  

In this paper, the mentioned estimated heights at the 

chosen distances are obtained by applying different 

methods, i.e., SMS and AMS estimations 

(characteristic functions and appropriate algorithms 

can be found in Wiśniewski, 2009; Wyszkowska 

and Duchnowski, 2019) as well as the LS estimation 

and two robust M-estimation method, namely 

Huber method and Tukey method (more 

information about robust M-estimation can be 

found in e.g., Gui and Zhang, 1998; Ge et al., 2013). 

The estimated heights mentioned allow us to create 

estimated profiles for two different years, hence the 

profile of the height differences.  

The comparison of all methods mentioned and the 

three approaches (processing whole sets, intervals, 

or sliding window method) are based on two real 

objects measured by ALS in two epochs (two 

different years).  

3 Results 

One assumes the same parameters for data 

processing for both objects. Each set concerns the 

profile of a length of 100 m. In the second approach, 

one creates nine intervals of the length of 10 m 

(from 5 m to 15 m, from 15 m to 25 m, etc.). In the 

third approach, the sliding window length is 20 m, 

and the slide of the window is equal to 10 m. More 

information about sliding window algorithm and 
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applications can be found in (e.g., Wang et al., 2016; 

Li et al., 2018). 

3.1 Field area 

The first object is a field area near Malbork in 

Poland. Data from 2022 and 2023 were downloaded 

from https://www.geoportal.gov.pl/ (accessed on 

9th July 2024). The cutout of the original LiDAR 

point cloud related to distance d of 100 m is 

presented in Figure 1 (H is a point height). 

 

Figure 1. LiDAR data related to the field area 

The data from each year are processed separately 

using the methods discussed and in three scenarios:  

 Scenario A – each profile was approximated 

by the fourth-degree polynomial,  

 Scenario B – 10 m intervals, in which 

estimated heights are determined by the 

second-degree polynomial,  

 Scenario C – 20 m sliding windows, in which 

estimated heights are determined by the 

second-degree polynomial. 

Figure 2 shows the height differences Ĥ  for three 

scenarios.  

 

Figure 2. Estimated height differences ˆH of the 

field area in different scenarios 

The estimated height differences

2023 2022
ˆ ˆ ˆH H H    (where 2023Ĥ  is the estimated 

height in the year 2023 while 2022Ĥ  in the year 

2022) at every 10 m are obtained by applying SMS, 

AMS, LS, Huber, and Tukey estimations, 

https://www.geoportal.gov.pl/
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respectively. In comparison, height differences are 

also based on raw data (obtained using linear 

interpolation at the same distances). 

The simple graphical analysis reveals that data from 

2022 are much less accurate than data from 2023, 

which stems from the change in measurement 

seasons. The older observation set is undoubtedly 

disturbed by the vegetation cover. It is also 

confirmed by the estimated differences in the profile 

(Fig. 2). The results of the methods applied differ 

significantly in the two first Scenarios. In the last 

Scenario, they are much more similar in shape.  

Msplit estimation (both variants) provides smaller 

height differences, which might stem from higher 

robustness against the negative outliers. 

3.2 River area 

The second object is the Nogat River area near 

Malbork, Poland. Data from 2022 and 2023 were 

downloaded from https://www.geoportal.gov.pl/ 

(accessed on 9th July 2024). The cutout of the 

original LiDAR point cloud related to distance d of 

100 m is presented in Figure 3. 

Since in this test, one estimates the change of the 

water level in the river, the following slightly 

different scenarios are considered: 

 Scenario A – each profile was approximated 

by the first-degree polynomial, 

 Scenario B – 10 m intervals, in which 

estimated heights are determined by the first-

degree polynomial, 

 Scenario C – 20 m sliding windows, in which 

estimated heights are determined by the first-

degree polynomial. 

Figure 4 shows the height differences ˆH  for the 

river area in the three scenarios mentioned. The 

estimation results are the smoothest in the first 

Scenario. They seem to reflect the natural shape of 

the river. However, they “lost” the anomaly placed 

in the last 20 m distance under the study. Such an 

anomaly might result from waves or floating objects 

and should not be neglected in the analysis. It is well 

identified in the results of Scenarios B and C. The 

last Scenario, once again, brings results similar to 

one another in shape.  

 

Figure 3. LiDAR data related to the river area 

4 Conclusions 

The study presented is preliminary research 

concerning applying the sliding window method in 

processing LiDAR data using Msplit estimation. The 

results obtained for two example objects show that 

the approach mentioned brings more reliable results 

than processing the whole observation set or its 

parts excluding each other. Such general 

information is a clue for further research concerning 

the more detailed analysis of the method, especially 

from a practical point of view. There is no doubt that 

one should examine the optimal width of the 

window and the slide size. The results presented for 

the profiles are very promising. Therefore, the same 

approach might also be successful in estimating 

changes in whole surfaces. Such application is the 

subject of our next research. 

 

https://www.geoportal.gov.pl/
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Figure 4. Estimated height differences ˆH  of the 

river area in different scenarios 
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